Software

Variogram method for Global Sensitivity Analysis

The University of Adelaide
Nhu Do (Aggregated by)
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.25909/5dae29fb5c4f2&rft.title=Variogram method for Global Sensitivity Analysis&rft.identifier=https://doi.org/10.25909/5dae29fb5c4f2&rft.publisher=The University of Adelaide&rft.description=We extend the “variogram-based” theory of Global Sensitivity Analysis, called Variogram Analysis of Response Surfaces (VARS), and develop a new generalized star sampling technique (called gSTAR) to accommodate correlated multivariate distributions.&rft.creator=Nhu Do&rft.date=2019&rft_rights=MIT&rft_subject=Global Sensitivity Analysis&rft_subject=Variogram&rft_subject=Response surface&rft_subject=Hydrology&rft_subject=Correlated Variables&rft_subject=Correlation effects&rft_subject=Multivariate distribution&rft_subject=Water Resources Engineering&rft_subject=Surfacewater Hydrology&rft_subject=Surface water hydrology&rft_subject=Water resources engineering&rft.type=Computer Program&rft.language=English Access the software

Licence & Rights:

view details

MIT

Access:

Other

Full description

We extend the “variogram-based” theory of Global Sensitivity Analysis, called Variogram Analysis of Response Surfaces (VARS), and develop a new generalized star sampling technique (called gSTAR) to accommodate correlated multivariate distributions.

Issued: 2019-10-22

Created: 2019-10-22

This dataset is part of a larger collection

Click to explore relationships graph
Identifiers