Data

Zn-ion ultrafluidity via bioinspired ion channel for ultralong lifespan Zn-ion battery

Queensland University of Technology
Zhang, Fan
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://researchdatafinder.qut.edu.au/individual/n12093&rft.title=Zn-ion ultrafluidity via bioinspired ion channel for ultralong lifespan Zn-ion battery&rft.identifier=http://researchdatafinder.qut.edu.au/individual/n12093&rft.publisher=Queensland University of Technology&rft.description= Herein, Resulting from the perfect Zn2+/SO42- selectivity (~10), enhanced Zn2+ transfer number ( ) and the ultrafluidic Zn2+ flux (1.9 ×10-3 mmol m-2 s-1 vs. 1.67 ×10-3 mol m-2 s-1 for KcsA). The symmetric cells achieve a lifespan of over 5,400 h . Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2,000 cycles at 1 A g-1. The regulated ion transport by learning from biological plasma membrane opens a new venue towards ultralong lifespan aqueous batteries. &rft.creator=Zhang, Fan &rft.date=2024&rft.edition=1&rft.coverage=153.027041,-27.477302&rft_rights=© Queensland University of Technology, 2024.&rft_rights=Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/4.0/&rft_subject=Aqueous battery&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 3.0
http://creativecommons.org/licenses/by/4.0/

© Queensland University of Technology, 2024.

Access:

Other

Contact Information

Postal Address:
Fan zhang

f27.zhang@hdr.qut.edu.au

Full description

Herein, Resulting from the perfect Zn2+/SO42- selectivity (~10), enhanced Zn2+ transfer number ( ) and the ultrafluidic Zn2+ flux (1.9 ×10-3 mmol m-2 s-1 vs. 1.67 ×10-3 mol m-2 s-1 for KcsA). The symmetric cells achieve a lifespan of over 5,400 h . Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2,000 cycles at 1 A g-1. The regulated ion transport by learning from biological plasma membrane opens a new venue towards ultralong lifespan aqueous batteries.

Data time period: 05 2023 to 06 2024

This dataset is part of a larger collection

Click to explore relationships graph

153.02704,-27.4773

153.027041,-27.477302

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers