Data

Wallaby Creek Flux Data Collection

Terrestrial Ecosystem Research Network
Beringer, Jason ; McHugh, Ian
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/596d22f4-e43c-4af0-850e-0be6e26a1d03&rft.title=Wallaby Creek Flux Data Collection&rft.identifier=http://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/596d22f4-e43c-4af0-850e-0be6e26a1d03&rft.publisher=Terrestrial Ecosystem Research Network&rft.description=This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in wet sclerophyll forest using eddy covariance techniques. The forest is classed as a tall, wet sclerophyll forest, and the dominant Eucalyptus Regnans or Mountain Ash trees have an average canopy height of 75m. The site contains a chronosequence of (20, 80 and 300) stand ages that were established during fires occurring over the last 300 years. The area is assigned the IUCN Category II (National Parks) of the United Nations’ list of National Parks and protected areas, which means that park is primarily managed for ecosystem conservation. The catchment area is dominated by Mountain Ash, the world’s tallest flowering plant (angiosperm). Trees can reach heights of more than 90 metres in areas with high rainfall and fertile soil. Mountain ash forests are confined to the cool mountain regions with elevations ranging from 460 - 1100m and average rainfalls of 1100-2000mm. These trees are well distributed throughout Victoria’s Central Highlands including the Otway Ranges and Strzlecki Ranges; they are also found in Tasmania. The catchment area contains a portion of the Mt Disappointment range, the Divide and the headwaters of Wallaby Creek and Silver Creek, and much of the slopes are characterised as flat to moderate. The station itself is located within an old growth stand with individual trees as old as 300 years. Below the dominant canopy lies a temperate rainforest understorey consisting of Pomaderris aspera and Olearia argophylla species, which are 10-18 metres tall. The lower layers of vegetation are dominated by tree ferns (Cyathea australis and Dicksonia antartica) and extensive tracts of rosette and rhizonic ferns (Polystichum proliferum and Blechnum wattsii) as well as Acacia trees. The major soil type within the forest is krasnozemic soils, which are friable red/brown, with high amounts of organic matter in the upper 20 – 30cm. However, the composition of krasnozemic soils is not homogenous, but rather a variation with altitude can be observed; lower altitudes inhabit grey-yellow podsolised soils compared to higher altitudes of the Kinglake and Hume plateau where the soil composition is krasnozemic loams. The clay content of these soils increases with depth until at least 200 cm deep, where after a transition soils contain rock fragments. The elevation is approximately 720 metres. The original station was destroyed in February 2009 by bushfires. Before the bushfire, the main mast stood at 110m. In March 2010, a replacement station was established and sat at a height of 5m. Data from the site has been recorded from May 2010 onwards. As the station is relatively new, the post fire instrumentation is currently not as diverse when compared to the pre-fire instrumentation. The climate of the study area is classified as a cool, temperate zone, with the highest temperatures occurring during the summer months of December – February (13.8 – 22.5°C), whilst the coolest temperatures are experienced in May and August (4.7 – 9.2°C). Average annual precipitation is 1209mm, with a maximum rainfall occurring in June (Ashton, 2000). The study site experiences foggy conditions after sunset during autumn and winter. This data is also available at http://data.ozflux.org.au .All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .Progress Code: completedMaintenance and Update Frequency: biannually&rft.creator=Beringer, Jason &rft.creator=McHugh, Ian &rft.date=2021&rft.edition=1.0&rft.relation=https://doi.org/10.5194/bg-13-5895-2016&rft.relation=https://doi.org/10.5194/bg-14-2903-2017&rft.coverage=In Kinglake National Park, Victoria.&rft.coverage=northlimit=-37.429; southlimit=-37.429; westlimit=145.1873; eastLimit=145.1873; projection=EPSG:4326&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_rights=&rft_rights=TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br /><br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting&rft_subject=climatologyMeteorologyAtmosphere&rft_subject=BIOGEOCHEMICAL PROCESSES&rft_subject=EARTH SCIENCE&rft_subject=SOLID EARTH&rft_subject=GEOCHEMISTRY&rft_subject=LAND PRODUCTIVITY&rft_subject=LAND SURFACE&rft_subject=LAND USE/LAND COVER&rft_subject=EVAPOTRANSPIRATION&rft_subject=ATMOSPHERE&rft_subject=ATMOSPHERIC WATER VAPOR&rft_subject=TERRESTRIAL ECOSYSTEMS&rft_subject=BIOSPHERE&rft_subject=ATMOSPHERIC PRESSURE MEASUREMENTS&rft_subject=ATMOSPHERIC PRESSURE&rft_subject=TURBULENCE&rft_subject=WIND SPEED&rft_subject=WIND DIRECTION&rft_subject=TRACE GASES/TRACE SPECIES&rft_subject=ATMOSPHERIC CHEMISTRY&rft_subject=ATMOSPHERIC CARBON DIOXIDE&rft_subject=PHOTOSYNTHETICALLY ACTIVE RADIATION&rft_subject=LONGWAVE RADIATION&rft_subject=SHORTWAVE RADIATION&rft_subject=INCOMING SOLAR RADIATION&rft_subject=ATMOSPHERIC RADIATION&rft_subject=HEAT FLUX&rft_subject=AIR TEMPERATURE&rft_subject=ATMOSPHERIC TEMPERATURE&rft_subject=SURFACE TEMPERATURE&rft_subject=PRECIPITATION AMOUNT&rft_subject=PRECIPITATION&rft_subject=HUMIDITY&rft_subject=SOIL MOISTURE/WATER CONTENT&rft_subject=SOIL TEMPERATURE&rft_subject=ATMOSPHERIC SCIENCES&rft_subject=EARTH SCIENCES&rft_subject=ECOLOGICAL APPLICATIONS&rft_subject=ENVIRONMENTAL SCIENCES&rft_subject=Ecosystem Function&rft_subject=ENVIRONMENTAL SCIENCE AND MANAGEMENT&rft_subject=Environmental Monitoring&rft_subject=SOIL SCIENCES&rft_subject=Wallaby Creek Flux Station&rft_subject=REBS HFT3 Soil Heat Flux Plate&rft_subject=Vaisala HMP45C&rft_subject=Campbell Scientific TCAV Averaging Soil Thermocouple Probe&rft_subject=LI-COR LI-7500&rft_subject=Kipp&Zonen CNR4&rft_subject=HyQuest Solutions CS700&rft_subject=Campbell Scientific CS615&rft_subject=Campbell Scientific CSAT3&rft_subject=air temperature (degree Celsius)&rft_subject=degree Celsius&rft_subject=downward heat flux at ground level in soil (Watt per Square Meter)&rft_subject=Watt per Square Meter&rft_subject=eastward wind (Meter per Second)&rft_subject=Meter per Second&rft_subject=ecosystem respiration (Micromoles per square metre second)&rft_subject=Micromoles per square metre second&rft_subject=gross primary productivity of biomass expressed as carbon (Micromoles per square metre second)&rft_subject=magnitude of surface downward stress (Kilograms per metre per square second)&rft_subject=Kilograms per metre per square second&rft_subject=mass concentration of carbon dioxide in air (Milligram per Cubic Meter)&rft_subject=Milligram per Cubic Meter&rft_subject=mass concentration of water vapor in air (Gram per Cubic Meter)&rft_subject=Gram per Cubic Meter&rft_subject=mole fraction of carbon dioxide in air (Micromoles per mole)&rft_subject=Micromoles per mole&rft_subject=mole fraction of water vapor in air (Millimoles per mole)&rft_subject=Millimoles per mole&rft_subject=Monin-Obukhov length (Meter)&rft_subject=Meter&rft_subject=net ecosystem exchange (Micromoles per square metre second)&rft_subject=net ecosystem productivity (Micromoles per square metre second)&rft_subject=northward wind (Meter per Second)&rft_subject=relative humidity (Percent)&rft_subject=Percent&rft_subject=soil temperature (degree Celsius)&rft_subject=specific humidity (Kilogram per Kilogram)&rft_subject=Kilogram per Kilogram&rft_subject=specific humidity saturation deficit in air (Kilogram per Kilogram)&rft_subject=surface air pressure (Kilopascal)&rft_subject=Kilopascal&rft_subject=surface downwelling longwave flux in air (Watt per Square Meter)&rft_subject=surface downwelling shortwave flux in air (Watt per Square Meter)&rft_subject=surface friction velocity (Meter per Second)&rft_subject=surface net downward radiative flux (Watt per Square Meter)&rft_subject=surface upward flux of available energy (Watt per Square Meter)&rft_subject=surface upward latent heat flux (Watt per Square Meter)&rft_subject=surface upward mole flux of carbon dioxide (Micromoles per square metre second)&rft_subject=surface upward sensible heat flux (Watt per Square Meter)&rft_subject=surface upwelling longwave flux in air (Watt per Square Meter)&rft_subject=surface upwelling shortwave flux in air (Watt per Square Meter)&rft_subject=thickness of rainfall amount (Millimetre)&rft_subject=Millimetre&rft_subject=upward mole flux of carbon dioxide due inferred from storage (Micromoles per square metre second)&rft_subject=vertical wind (Meter per Second)&rft_subject=volume fraction of condensed water in soil (Cubic Meter per Cubic Meter)&rft_subject=Cubic Meter per Cubic Meter&rft_subject=water evapotranspiration flux (Kilograms per square metre per second)&rft_subject=Kilograms per square metre per second&rft_subject=water vapor partial pressure in air (Kilopascal)&rft_subject=water vapor saturation deficit in air (Kilopascal)&rft_subject=wind from direction (Degree)&rft_subject=Degree&rft_subject=wind speed (Meter per Second)&rft_subject=Point Resolution&rft_subject=1 minute - < 1 hour&rft_subject=Eddy Covariance&rft_subject=AU-Wac&rft_subject=IUCN Category II&rft_subject=University of Alaska Fairbanks&rft_subject=wet sclerophyll forest&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure.

Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.

Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting

Access:

Open view details

unclassified

Contact Information

Street Address:
Terrestrial Ecosystem Research Network
Building 1019, 80 Meiers Rd
QLD 4068
Australia
Ph: +61 7 3365 9097

esupport@tern.org.au

Brief description

This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in wet sclerophyll forest using eddy covariance techniques.

The forest is classed as a tall, wet sclerophyll forest, and the dominant Eucalyptus Regnans or Mountain Ash trees have an average canopy height of 75m. The site contains a chronosequence of (20, 80 and 300) stand ages that were established during fires occurring over the last 300 years. The area is assigned the IUCN Category II (National Parks) of the United Nations’ list of National Parks and protected areas, which means that park is primarily managed for ecosystem conservation. The catchment area is dominated by Mountain Ash, the world’s tallest flowering plant (angiosperm). Trees can reach heights of more than 90 metres in areas with high rainfall and fertile soil. Mountain ash forests are confined to the cool mountain regions with elevations ranging from 460 - 1100m and average rainfalls of 1100-2000mm. These trees are well distributed throughout Victoria’s Central Highlands including the Otway Ranges and Strzlecki Ranges; they are also found in Tasmania. The catchment area contains a portion of the Mt Disappointment range, the Divide and the headwaters of Wallaby Creek and Silver Creek, and much of the slopes are characterised as flat to moderate.

The station itself is located within an old growth stand with individual trees as old as 300 years. Below the dominant canopy lies a temperate rainforest understorey consisting of Pomaderris aspera and Olearia argophylla species, which are 10-18 metres tall. The lower layers of vegetation are dominated by tree ferns (Cyathea australis and Dicksonia antartica) and extensive tracts of rosette and rhizonic ferns (Polystichum proliferum and Blechnum wattsii) as well as Acacia trees.

The major soil type within the forest is krasnozemic soils, which are friable red/brown, with high amounts of organic matter in the upper 20 – 30cm. However, the composition of krasnozemic soils is not homogenous, but rather a variation with altitude can be observed; lower altitudes inhabit grey-yellow podsolised soils compared to higher altitudes of the Kinglake and Hume plateau where the soil composition is krasnozemic loams. The clay content of these soils increases with depth until at least 200 cm deep, where after a transition soils contain rock fragments. The elevation is approximately 720 metres.

The original station was destroyed in February 2009 by bushfires. Before the bushfire, the main mast stood at 110m. In March 2010, a replacement station was established and sat at a height of 5m. Data from the site has been recorded from May 2010 onwards. As the station is relatively new, the post fire instrumentation is currently not as diverse when compared to the pre-fire instrumentation. The climate of the study area is classified as a cool, temperate zone, with the highest temperatures occurring during the summer months of December – February (13.8 – 22.5°C), whilst the coolest temperatures are experienced in May and August (4.7 – 9.2°C). Average annual precipitation is 1209mm, with a maximum rainfall occurring in June (Ashton, 2000). The study site experiences foggy conditions after sunset during autumn and winter.

This data is also available at http://data.ozflux.org.au .

Lineage

All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .

Progress Code: completed
Maintenance and Update Frequency: biannually

Notes

Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
The station was established in August 2005 by Monash University as part of an ARC funded sustainable futures project, number DP0451247 and was operated in collaboration with Charles Darwin University and University of Alaska Fairbanks and supported by TERN. The flux station was part of the Australian OzFlux Network and contributed to the international FLUXNET Network.
Purpose
The research aim of the Wallaby Creek flux station is to understand the complex coupling of carbon, water and energy cycles within Australia's old growth temperate forests over various scales in order to assess the impact of future environmental change including to:
measure exchanges of carbon dioxide, water vapour and energy between an old growth, tall forest and the atmosphere using micrometeorological techniques
quantify the carbon sink/source of a temperate, old growth Mountain Ash forest and identify the contribution of such forests to the continents' National Carbon Inventory
provide a database of microclimate and ecological parameters for use in carbon and water modelling projects
investigate how carbon cycles change over successional time scales (decadal to centennial).
Data Quality Information

Data Quality Assessment Scope
local : dataset
If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include (i) range checks for plausible limits, (ii) spike detection, (iii) dependency on other variables and (iv) manual rejection of date ranges. Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO2 and H2O signal strength, depending upon the configuration of the IRGA. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017. For further information about the software (PyFluxPro) used to process and quality control the flux data, see https://github.com/OzFlux/PyFluxPro/wiki .

Created: 2005-08-25

Issued: 2021-09-20

Modified: 2024-05-04

Data time period: 2005-08-25 to 2014-01-01

This dataset is part of a larger collection

145.1873,-37.429

145.1873,-37.429

text: In Kinglake National Park, Victoria.

Subjects
1 minute - < 1 hour | AIR TEMPERATURE | ATMOSPHERE | ATMOSPHERIC CARBON DIOXIDE | ATMOSPHERIC CHEMISTRY | ATMOSPHERIC PRESSURE | ATMOSPHERIC PRESSURE MEASUREMENTS | ATMOSPHERIC RADIATION | Atmospheric Sciences | ATMOSPHERIC TEMPERATURE | ATMOSPHERIC WATER VAPOR | AU-Wac | BIOGEOCHEMICAL PROCESSES | BIOSPHERE | Campbell Scientific CS615 | Campbell Scientific CSAT3 | Campbell Scientific TCAV Averaging Soil Thermocouple Probe | Cubic Meter per Cubic Meter | Degree | EARTH SCIENCE | Earth Sciences | Ecological Applications | Environmental Science and Management | Environmental Sciences | EVAPOTRANSPIRATION | Ecosystem Function | Eddy Covariance | Environmental Monitoring | GEOCHEMISTRY | Gram per Cubic Meter | HEAT FLUX | HUMIDITY | HyQuest Solutions CS700 | INCOMING SOLAR RADIATION | IUCN Category II | Kilogram per Kilogram | Kilograms per metre per square second | Kilograms per square metre per second | Kilopascal | Kipp&Zonen CNR4 | LAND PRODUCTIVITY | LAND SURFACE | LAND USE/LAND COVER | LI-COR LI-7500 | LONGWAVE RADIATION | Meter | Meter per Second | Micromoles per mole | Micromoles per square metre second | Milligram per Cubic Meter | Millimetre | Millimoles per mole | Monin-Obukhov length (Meter) | PHOTOSYNTHETICALLY ACTIVE RADIATION | PRECIPITATION | PRECIPITATION AMOUNT | Percent | Point Resolution | REBS HFT3 Soil Heat Flux Plate | SHORTWAVE RADIATION | SOIL MOISTURE/WATER CONTENT | Soil Sciences | SOIL TEMPERATURE | SOLID EARTH | SURFACE TEMPERATURE | TERRESTRIAL ECOSYSTEMS | TRACE GASES/TRACE SPECIES | TURBULENCE | University of Alaska Fairbanks | Vaisala HMP45C | WIND DIRECTION | WIND SPEED | Wallaby Creek Flux Station | Watt per Square Meter | air temperature (degree Celsius) | climatologyMeteorologyAtmosphere | degree Celsius | downward heat flux at ground level in soil (Watt per Square Meter) | eastward wind (Meter per Second) | ecosystem respiration (Micromoles per square metre second) | gross primary productivity of biomass expressed as carbon (Micromoles per square metre second) | magnitude of surface downward stress (Kilograms per metre per square second) | mass concentration of carbon dioxide in air (Milligram per Cubic Meter) | mass concentration of water vapor in air (Gram per Cubic Meter) | mole fraction of carbon dioxide in air (Micromoles per mole) | mole fraction of water vapor in air (Millimoles per mole) | net ecosystem exchange (Micromoles per square metre second) | net ecosystem productivity (Micromoles per square metre second) | northward wind (Meter per Second) | relative humidity (Percent) | soil temperature (degree Celsius) | specific humidity (Kilogram per Kilogram) | specific humidity saturation deficit in air (Kilogram per Kilogram) | surface air pressure (Kilopascal) | surface downwelling longwave flux in air (Watt per Square Meter) | surface downwelling shortwave flux in air (Watt per Square Meter) | surface friction velocity (Meter per Second) | surface net downward radiative flux (Watt per Square Meter) | surface upward flux of available energy (Watt per Square Meter) | surface upward latent heat flux (Watt per Square Meter) | surface upward mole flux of carbon dioxide (Micromoles per square metre second) | surface upward sensible heat flux (Watt per Square Meter) | surface upwelling longwave flux in air (Watt per Square Meter) | surface upwelling shortwave flux in air (Watt per Square Meter) | thickness of rainfall amount (Millimetre) | upward mole flux of carbon dioxide due inferred from storage (Micromoles per square metre second) | vertical wind (Meter per Second) | volume fraction of condensed water in soil (Cubic Meter per Cubic Meter) | water evapotranspiration flux (Kilograms per square metre per second) | water vapor partial pressure in air (Kilopascal) | water vapor saturation deficit in air (Kilopascal) | wet sclerophyll forest | wind from direction (Degree) | wind speed (Meter per Second) |

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover