Data

Solid Geology map of the East Tennant region

Geoscience Australia
Clark, A. ; Highet, L. ; Schofield, A. ; Doublier, M.
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=https://pid.geoscience.gov.au/dataset/ga/145260&rft.title=Solid Geology map of the East Tennant region&rft.identifier=https://pid.geoscience.gov.au/dataset/ga/145260&rft.publisher=Commonwealth of Australia (Geoscience Australia)&rft.description=New multidisciplinary data collected as part of the Exploring for the Future (EFTF) Program has changed our understanding of the basement geology of the East Tennant region in the Northern Territory, and its potential to host mineralisation. To ensure this understanding is accurately reflected in geological maps, we undertake a multidisciplinary interpretation of the basement geology in East Tennant. For the purposes of this product, basement comprises polydeformed and variably metamorphosed rocks of the pre-1800 Ma Warramunga Province, which are exposed in outcrop around Tennant Creek, to the west. In the East Tennant region, these rocks are entirely covered by younger flat-lying strata of the Georgina Basin, and locally covered by the Kalkarindji Suite, and South Nicholson Basin (Ahmad 2000). The data from this solid geology map are designed to be included in mineral potential models and future updates to Geoscience Australia’s chronostratigraphic solid geology maps. This interpretation comprises a Geographic Information System (GIS) dataset containing basement geology polygons, faults and contacts. Geological units are consistent with the Australian Stratigraphic Units Database and faults utilise existing conventions followed by Geoscience Australia’s chronostratigraphic solid geology products (Stewart et al. 2020). To aid in understanding the data, we have added a three-stage fault hierarchy. Basement geology was interpreted at 1:100000 scale (but is intended for display at 1:250000 scale) using geophysical imagery, namely total magnetic intensity and vertical derivatives of these data, and gravity. The interpretation makes use of numerous new datasets collected as part of the EFTF program. These include a new 2-km spaced gravity grid over most of East Tennant, drill-core lithology from new boreholes drilled as part of the MinEx CRC National Drilling Initiative, airborne electromagnetic data collected under the AusAEM program, new active seismic data, and geochronology from legacy boreholes. These data are available to view and download from the Geoscience Australia portal (https://portal.ga.gov.au). We interpret that basement in the East Tennant region does represent the eastern continuation of the Warramunga Province. There is no obvious geophysical or geological boundary between Tennant Creek and East Tennant. However, the East Tennant region mostly lacks stratigraphy equivalent to the Ooradidgee Group, which overlies and postdates mineralisation in turbiditic rocks of the Warramunga Formation at Tennant Creek. Instead, East Tennant is underlain by a widespread succession of clastic metapelitic rocks that bear many lithological and geochronological similarities to the Warramunga Formation (Cross et al. 2020). Other important outcomes of this work include the documentation of significant regional faults and shear zones and abundant intrusive rocks at East Tennant. Geophysical and geochronological data suggest that this deformation and magmatism is the eastern continuation of ~1850 Ma tectonism preserved at Tennant Creek (e.g. Cross et al. 2020). NOTE: Specialised (GIS) software is required to view this data. References: Ahmad M, 2000. Geological map of the Northern Territory. 1:2 500 000 scale. Northern Territory Geological Survey, Darwin. Cross AJ, Clark AD, Schofield A and Kositcin N, 2020. New SHRIMP U-Pb zircon and monazite geochronology of the East Tennant region: a possible undercover extension of the Warramunga Province, Tennant Creek. In: Czarnota K, Roach I, Abbott S, Haynes M, Kositcin N, Ray A and Slatter E (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4. Stewart AJ, Liu SF, Bonnardot M-A, Highet LM, Woods M, Brown C, Czarnota K and Connors K, 2020. Seamless chronostratigraphic solid geology of the North Australian Craton. In: Czarnota K, Roach I, Abbott S, Haynes M, Kositcin N, Ray A and Slatter E (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.Maintenance and Update Frequency: asNeededStatement: This dataset was interpreted as part of Geoscience Australia's Exploring for the Future Program. It is based on new geophysical and geological data collected as of 2021, including gravity, magnetics, reflection seismic and drilling data.&rft.creator=Clark, A. &rft.creator=Highet, L. &rft.creator=Schofield, A. &rft.creator=Doublier, M. &rft.date=2021&rft.coverage=westlimit=134.422; southlimit=-20.8082; eastlimit=137.1422; northlimit=-18.5302&rft.coverage=westlimit=134.422; southlimit=-20.8082; eastlimit=137.1422; northlimit=-18.5302&rft_rights=&rft_rights=Creative Commons Attribution 4.0 International Licence&rft_rights=CC-BY&rft_rights=4.0&rft_rights=http://creativecommons.org/licenses/&rft_rights=Australian Government Security ClassificationSystem&rft_rights=https://www.protectivesecurity.gov.au/Pages/default.aspx&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_subject=geoscientificInformation&rft_subject=EARTH SCIENCES&rft_subject=East Tennant&rft_subject=Solid Geology&rft_subject=Exploring for the Future&rft_subject=National Drilling Initiative&rft_subject=Published_External&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

Creative Commons Attribution 4.0 International Licence

CC-BY

4.0

http://creativecommons.org/licenses/

Australian Government Security ClassificationSystem

https://www.protectivesecurity.gov.au/Pages/default.aspx

WWW:LINK-1.0-http--link

Access:

Open

Brief description

New multidisciplinary data collected as part of the Exploring for the Future (EFTF) Program has changed our understanding of the basement geology of the East Tennant region in the Northern Territory, and its potential to host mineralisation. To ensure this understanding is accurately reflected in geological maps, we undertake a multidisciplinary interpretation of the basement geology in East Tennant. For the purposes of this product, basement comprises polydeformed and variably metamorphosed rocks of the pre-1800 Ma Warramunga Province, which are exposed in outcrop around Tennant Creek, to the west. In the East Tennant region, these rocks are entirely covered by younger flat-lying strata of the Georgina Basin, and locally covered by the Kalkarindji Suite, and South Nicholson Basin (Ahmad 2000). The data from this solid geology map are designed to be included in mineral potential models and future updates to Geoscience Australia’s chronostratigraphic solid geology maps. This interpretation comprises a Geographic Information System (GIS) dataset containing basement geology polygons, faults and contacts. Geological units are consistent with the Australian Stratigraphic Units Database and faults utilise existing conventions followed by Geoscience Australia’s chronostratigraphic solid geology products (Stewart et al. 2020). To aid in understanding the data, we have added a three-stage fault hierarchy. Basement geology was interpreted at 1:100000 scale (but is intended for display at 1:250000 scale) using geophysical imagery, namely total magnetic intensity and vertical derivatives of these data, and gravity. The interpretation makes use of numerous new datasets collected as part of the EFTF program. These include a new 2-km spaced gravity grid over most of East Tennant, drill-core lithology from new boreholes drilled as part of the MinEx CRC National Drilling Initiative, airborne electromagnetic data collected under the AusAEM program, new active seismic data, and geochronology from legacy boreholes. These data are available to view and download from the Geoscience Australia portal (https://portal.ga.gov.au). We interpret that basement in the East Tennant region does represent the eastern continuation of the Warramunga Province. There is no obvious geophysical or geological boundary between Tennant Creek and East Tennant. However, the East Tennant region mostly lacks stratigraphy equivalent to the Ooradidgee Group, which overlies and postdates mineralisation in turbiditic rocks of the Warramunga Formation at Tennant Creek. Instead, East Tennant is underlain by a widespread succession of clastic metapelitic rocks that bear many lithological and geochronological similarities to the Warramunga Formation (Cross et al. 2020). Other important outcomes of this work include the documentation of significant regional faults and shear zones and abundant intrusive rocks at East Tennant. Geophysical and geochronological data suggest that this deformation and magmatism is the eastern continuation of ~1850 Ma tectonism preserved at Tennant Creek (e.g. Cross et al. 2020). NOTE: Specialised (GIS) software is required to view this data. References: Ahmad M, 2000. Geological map of the Northern Territory. 1:2 500 000 scale. Northern Territory Geological Survey, Darwin. Cross AJ, Clark AD, Schofield A and Kositcin N, 2020. New SHRIMP U-Pb zircon and monazite geochronology of the East Tennant region: a possible undercover extension of the Warramunga Province, Tennant Creek. In: Czarnota K, Roach I, Abbott S, Haynes M, Kositcin N, Ray A and Slatter E (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4. Stewart AJ, Liu SF, Bonnardot M-A, Highet LM, Woods M, Brown C, Czarnota K and Connors K, 2020. Seamless chronostratigraphic solid geology of the North Australian Craton. In: Czarnota K, Roach I, Abbott S, Haynes M, Kositcin N, Ray A and Slatter E (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

Lineage

Maintenance and Update Frequency: asNeeded
Statement: This dataset was interpreted as part of Geoscience Australia's Exploring for the Future Program. It is based on new geophysical and geological data collected as of 2021, including gravity, magnetics, reflection seismic and drilling data.

Notes

Purpose
To document contemporary understanding of the solid geology of the East Tennant region based on new data collected as part of the Exploring for the Future program.

Issued: 14 04 2021

Data time period: 2020-06-06 to 2021-03-18

This dataset is part of a larger collection

Click to explore relationships graph

137.1422,-18.5302 137.1422,-20.8082 134.422,-20.8082 134.422,-18.5302 137.1422,-18.5302

135.7821,-19.6692

text: westlimit=134.422; southlimit=-20.8082; eastlimit=137.1422; northlimit=-18.5302

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
Download the data package [1.6 MB]

uri : https://d28rz98at9flks.cloudfront.net/145260/145260_00_3.zip

Identifiers