Data

Soil and Landscape Grid National Soil Attribute Maps - Available Phosphorus (3" resolution) - Release 1

Terrestrial Ecosystem Research Network
Zund, Peter
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.25919/6qzh-b979&rft.title=Soil and Landscape Grid National Soil Attribute Maps - Available Phosphorus (3 resolution) - Release 1&rft.identifier=10.25919/6qzh-b979&rft.publisher=Terrestrial Ecosystem Research Network&rft.description=This is Version 1 of the Australian Available Phosphorus product of the Soil and Landscape Grid of Australia. The map gives a modelled estimate of the spatial distribution of available phosphorus in soils across Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - GlobalSoilMaps. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Detailed information about the Soil and Landscape Grid of Australia can be found at - SLGA Attribute Definition: Available Phosphorus Units: mg/kg; Period (temporal coverage; approximately): 1970-2021; Spatial resolution: 3 arc seconds (approx 90 m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Data license: Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: Cloud Optimised GeoTIFF.This dataset models the spatial distribution of Available Phosphorus using a commonly measured analyte, bicarbonate - extractable phosphorus (Colwell P) (Method 9B1 & 9B2 - Rayment and Lyons 2010). It provides estimates of Colwell P across Australia for each Global Soil Map (GSM) depth interval at a 3 arcsecond resolution (80 - 100 m pixel depending on where in Australia). The data is supplied as single band GeoTIFF rasters and includes the 5th, 50th and 95th percentile predictions (Based on a 90% confidence interval) for each GSM depth. Legacy Colwell P data currently stored in government agency soil databases in Australia that are from non-fertilised, non-cropped relatively undisturbed sites is being used to estimate AP. No new P data was collected for this project. Agency data was accessed using the newly developed Soil Data Federator Web API (Searle, pers.coms.). The Cowell P point data was combined with environmental covariates from the TERN national set to build a model of how Cowell P varies across Australia. Covariates were selected that best reflected the geography, geology, and climate of Australia. The model was built using the machine learning algorithm, Random Forests, which is commonly used in digital soil mapping in Australia. All processing for the generation of these products was undertaken using the R programming language. R Core Team (2020). Code - https://github.com/AusSoilsDSM/SLGA Observation data - https://esoil.io/TERNLandscapes/Public/Pages/SoilDataFederator/SoilDataFederator.html Covariate rasters - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/GetData-COGSDataStore.htmlProgress Code: completedMaintenance and Update Frequency: notPlanned&rft.creator=Zund, Peter &rft.date=2022&rft.edition=1.0&rft.coverage=northlimit=-9.99830972; southlimit=-43.642475; westlimit=112.91246806; eastLimit=153.63996639; projection=EPSG:4326&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_rights=&rft_rights=TERN services are provided on an as-is and as available basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure.<br> Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br><br> Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting<br> Please cite this dataset as {Author} ({PublicationYear}). {Title}. {Version, as appropriate}. Terrestrial Ecosystem Research Network. Dataset. {Identifier}.&rft_subject=environment&rft_subject=geoscientificInformation&rft_subject=SOILS&rft_subject=AGRICULTURE&rft_subject=EARTH SCIENCE&rft_subject=LAND SURFACE&rft_subject=Agricultural Land Management&rft_subject=AGRICULTURAL AND VETERINARY SCIENCES&rft_subject=AGRICULTURE, LAND AND FARM MANAGEMENT&rft_subject=Agricultural Spatial Analysis and Modelling&rft_subject=SOIL SCIENCES&rft_subject=ENVIRONMENTAL SCIENCES&rft_subject=Soil Sciences not elsewhere classified&rft_subject=soil phosphorus (Milligram per Kilogram)&rft_subject=Milligram per Kilogram&rft_subject=30 meters - < 100 meters&rft_subject=Decadal&rft_subject=TERN_Soils&rft_subject=TERN_Soils_DSM&rft_subject=Soil&rft_subject=TERN&rft_subject=Raster&rft_subject=Attribute&rft_subject=Available&rft_subject=Phosphorus&rft_subject=Continental&rft_subject=DSM&rft_subject=Global Soil Map&rft_subject=Spatial modelling&rft_subject=3-dimensional soil mapping&rft_subject=Spatial uncertainty&rft_subject=Soil Maps&rft_subject=Digital Soil Mapping&rft_subject=SLGA&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

TERN services are provided on an "as-is" and "as available" basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure.
Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.

Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting
Please cite this dataset as {Author} ({PublicationYear}). {Title}. {Version, as appropriate}. Terrestrial Ecosystem Research Network. Dataset. {Identifier}.

Access:

Open view details

unclassified

Contact Information

Street Address:
Terrestrial Ecosystem Research Network
Building 1019, 80 Meiers Rd
QLD 4068
Australia
Ph: +61 7 3365 9097

esupport@tern.org.au

Brief description

This is Version 1 of the Australian Available Phosphorus product of the Soil and Landscape Grid of Australia.

The map gives a modelled estimate of the spatial distribution of available phosphorus in soils across Australia.

The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - GlobalSoilMaps. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).
Detailed information about the Soil and Landscape Grid of Australia can be found at - SLGA

  • Attribute Definition: Available Phosphorus
  • Units: mg/kg;
  • Period (temporal coverage; approximately): 1970-2021;
  • Spatial resolution: 3 arc seconds (approx 90 m);
  • Total number of gridded maps for this attribute: 18;
  • Number of pixels with coverage per layer: 2007M (49200 * 40800);
  • Data license: Creative Commons Attribution 4.0 (CC BY);
  • Target data standard: GlobalSoilMap specifications;
  • Format: Cloud Optimised GeoTIFF.

Lineage

This dataset models the spatial distribution of Available Phosphorus using a commonly measured analyte, bicarbonate - extractable phosphorus (Colwell P) (Method 9B1 & 9B2 - Rayment and Lyons 2010). It provides estimates of Colwell P across Australia for each Global Soil Map (GSM) depth interval at a 3 arcsecond resolution (80 - 100 m pixel depending on where in Australia). The data is supplied as single band GeoTIFF rasters and includes the 5th, 50th and 95th percentile predictions (Based on a 90% confidence interval) for each GSM depth.

Legacy Colwell P data currently stored in government agency soil databases in Australia that are from non-fertilised, non-cropped relatively undisturbed sites is being used to estimate AP. No new P data was collected for this project. Agency data was accessed using the newly developed Soil Data Federator Web API (Searle, pers.coms.). The Cowell P point data was combined with environmental covariates from the TERN national set to build a model of how Cowell P varies across Australia. Covariates were selected that best reflected the geography, geology, and climate of Australia. The model was built using the machine learning algorithm, Random Forests, which is commonly used in digital soil mapping in Australia.

All processing for the generation of these products was undertaken using the R programming language. R Core Team (2020).

  • Code - https://github.com/AusSoilsDSM/SLGA
  • Observation data - https://esoil.io/TERNLandscapes/Public/Pages/SoilDataFederator/SoilDataFederator.html
  • Covariate rasters - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/GetData-COGSDataStore.html
Progress Code: completed
Maintenance and Update Frequency: notPlanned

Notes

Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.

The observed data used to produce this map was obtained from state and federal soil survey agencies.

This work was jointly funded by the Terrestrial Ecosystem Research Network (TERN), an Australian Government National Collaborative Research Infrastructure Strategy (NCRIS) project, and CSIRO.

CSIRO maintains and makes the data through the Australian Soil Resource Information System.
Purpose
The map gives a modelled estimate of the spatial distribution of soil Available Phosphorus Capacity across Australia.

Created: 2022-07-27

Issued: 2022-10-31

Modified: 2024-09-26

Data time period: to 2022-07-27

This dataset is part of a larger collection

Click to explore relationships graph

153.63997,-9.99831 153.63997,-43.64248 112.91247,-43.64248 112.91247,-9.99831 153.63997,-9.99831

133.276217225,-26.82039236

Other Information
Point-of-truth metadata URL

uri : https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/c6ef289b-1ca8-4e53-b8b4-aa97e4706c63

Methods Summary for Soil Available Phosphorus

uri : https://aussoilsdsm.esoil.io/slga-version-2-products/available-phosphorus

Rayment, G. E., & Lyons, D. J. (2010). Soil Chemical Methods - Australasia. Australian soil and land survey handbooks. CSIRO Publishing. 10.1071/9780643101364.

doi : http://doi.org/10.1071/9780643101364

R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

uri : https://www.R-project.org