Data
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.14264/uql.2019.930&rft.title=Seaview Survey Photo-quadrat and Image Classification Dataset&rft.identifier=10.14264/uql.2019.930&rft.publisher=The University of Queensland&rft.description=The primary scientific dataset arising from the XL Catlin Seaview Survey project is the “Seaview Survey Photo-quadrat and Image Classification Dataset”, consisting of: (1) over one million standardised, downward-facing “photo-quadrat” images covering approximately 1m2 of the sea floor; (2) human-classified annotations that can be used to train and validate image classifiers; (3) benthic cover data arising from the application of machine learning classifiers to the photo-quadrats; and (4) the triplets of raw images (covering 360o) from which the photo-quadrats were derived.Photo-quadrats were collected between 2012 and 2018 at 860 transect locations around the world, including: the Caribbean and Bermuda, the Indian Ocean (Maldives, Chagos Archipelago), the Coral Triangle (Indonesia, Philippines, Timor-Leste, Solomon Islands), the Great Barrier Reef, Taiwan and Hawaii.For additional information regarding methodology, data structure, organization and size, please see attached document “Dataset documentation”.&rft.creator=Dr Catherine Kim&rft.creator=Dr Catherine Kim&rft.creator=Dr Emma Kennedy&rft.creator=Dr Emma Kennedy&rft.creator=Dr Erwin Alberto Rodriguez-Ramirez&rft.creator=Dr Erwin Alberto Rodriguez-Ramirez&rft.creator=Dr Kristen Brown&rft.creator=Dr Kristen Brown&rft.creator=Dr Sophie Dove&rft.creator=Dr Sophie Dove&rft.creator=Dr Veronica Radice&rft.creator=Dr Veronica Radice&rft.creator=Emeritus Professor Ove Hoegh-Guldberg&rft.creator=Ms Catherine Kim&rft.creator=Professor Ove Hoegh-Guldberg&rft.date=2019&rft_rights= http://creativecommons.org/licenses/by/3.0/deed.en_US&rft_subject=eng&rft_subject=coral reef&rft_subject=benthic community&rft_subject=monitoring&rft_subject=seascape surveys&rft_subject=photographic surveys&rft_subject=survey&rft_subject=machine learning&rft_subject=image classification&rft_subject=ECOLOGICAL APPLICATIONS&rft_subject=ENVIRONMENTAL SCIENCES&rft_subject=ECOLOGY&rft_subject=BIOLOGICAL SCIENCES&rft_subject=CLIMATE AND CLIMATE CHANGE&rft_subject=ENVIRONMENT&rft_subject=ECOSYSTEM ASSESSMENT AND MANAGEMENT&rft_subject=FLORA, FAUNA AND BIODIVERSITY&rft_subject=LAND AND WATER MANAGEMENT&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details

Access:

Open

Contact Information

data@library.uq.edu.au

Full description

The primary scientific dataset arising from the XL Catlin Seaview Survey project is the “Seaview Survey Photo-quadrat and Image Classification Dataset”, consisting of: (1) over one million standardised, downward-facing “photo-quadrat” images covering approximately 1m2 of the sea floor; (2) human-classified annotations that can be used to train and validate image classifiers; (3) benthic cover data arising from the application of machine learning classifiers to the photo-quadrats; and (4) the triplets of raw images (covering 360o) from which the photo-quadrats were derived.Photo-quadrats were collected between 2012 and 2018 at 860 transect locations around the world, including: the Caribbean and Bermuda, the Indian Ocean (Maldives, Chagos Archipelago), the Coral Triangle (Indonesia, Philippines, Timor-Leste, Solomon Islands), the Great Barrier Reef, Taiwan and Hawaii.For additional information regarding methodology, data structure, organization and size, please see attached document “Dataset documentation”.

Issued: 2019

Data time period: 16 09 2012 to 05 05 2018

This dataset is part of a larger collection

Click to explore relationships graph
Other Information
The Catlin Seaview Survey - kilometre-scale seascape assessment, and monitoring of coral reef ecosystems

local : UQ:347827

Gonzalez-Rivero, Manuel, Bongaerts, Pim, Beijbom, Oscar, Pizarro, Oscar, Friedman, Ariell, Rodriguez-Ramirez, Alberto, Upcroft, Ben, Laffoley, Dan, Kline, David, Bailhache, Christophe, Vevers, Richard and Hoegh-Guldberg, Ove (2014). The Catlin Seaview Survey - kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 24 (S2), 184-198. doi: 10.1002/aqc.2505

Scaling up ecological measurements of coral reefs using semi-automated field image collection and analysis

local : UQ:380143

Gonzalez-Rivero, Manuel, Beijbom, Oscar, Rodriguez-Ramirez, Alberto, Holtrop, Tadzio, Gonzalez-Marrero, Yeray, Ganase, Anjani, Roelfsema, Chris, Phinn, Stuart and Hoegh-Guldberg, Ove (2016). Scaling up ecological measurements of coral reefs using semi-automated field image collection and analysis. Remote Sensing, 8 (1) 30, 30. doi: 10.3390/rs8010030

Comparison of two photographic methodologies for collecting and analyzing the condition of coral reef ecosystems

local : UQ:697455

Bryant, D. E. P., Rodriguez-Ramirez, A., Phinn, S., Gonzalez-Rivero, M., Brown, K. T., Neal, B. P., Hoegh-Guldberg, O. and Dove, S. (2017). Comparison of two photographic methodologies for collecting and analyzing the condition of coral reef ecosystems. Ecosphere, 8 (10) e01971, e01971. doi: 10.1002/ecs2.1971

Monitoring through many eyes: integrating disparate datasets to improve monitoring of the Great Barrier Reef

local : UQ:dbdaddd

Peterson, Erin E., Santos-Fernández, Edgar, Chen, Carla, Clifford, Sam, Vercelloni, Julie, Pearse, Alan, Brown, Ross, Christensen, Bryce, James, Allan, Anthony, Ken, Loder, Jennifer, González-Rivero, Manuel, Roelfsema, Chris, Caley, M. Julian, Mellin, Camille, Bednarz, Tomasz and Mengersen, Kerrie (2020). Monitoring through many eyes: integrating disparate datasets to improve monitoring of the Great Barrier Reef. Environmental Modelling and Software, 124 104557, 104557. doi: 10.1016/j.envsoft.2019.104557

Forecasting intensifying disturbance effects on coral reefs

local : UQ:9495bb2

Vercelloni, Julie, Liquet, Benoit, Kennedy, Emma V., González-Rivero, Manuel, Caley, M. Julian, Peterson, Erin E., Puotinen, Marji, Hoegh-Guldberg, Ove and Mengersen, Kerrie (2020). Forecasting intensifying disturbance effects on coral reefs. Global Change Biology, 26 (5) gcb.15059, 2785-2797. doi: 10.1111/gcb.15059

Monitoring of coral reefs using artificial intelligence: a feasible and cost-effective approach

local : UQ:ac556ed

González-Rivero, Manuel, Beijbom, Oscar, Rodriguez-Ramirez, Alberto, Bryant, Dominic E. P., Ganase, Anjani, Gonzalez-Marrero, Yeray, Herrera-Reveles, Ana, Kennedy, Emma V., Kim, Catherine J. S., Lopez-Marcano, Sebastian, Markey, Kathryn, Neal, Benjamin P., Osborne, Kate, Reyes-Nivia, Catalina, Sampayo, Eugenia M., Stolberg, Kristin, Taylor, Abbie, Vercelloni, Julie, Wyatt, Mathew and Hoegh-Guldberg, Ove (2020). Monitoring of coral reefs using artificial intelligence: a feasible and cost-effective approach. Remote Sensing, 12 (3) 489, 489. doi: 10.3390/rs12030489

Towards automated annotation of benthic survey images: variability of human experts and operational modes of automation

local : UQ:367749

Beijbom, Oscar, Edmunds, Peter J., Roelfsema, Chris, Smith, Jennifer, Kline, David I., Neal, Benjamin P., Dunlap, Matthew J., Moriarty, Vincent, Fan, Tung-Yung, Tan, Chih-Jui, Chan, Stephen, Treibitz, Tali, Gamst, Anthony, Mitchell, B. Greg and Kriegman, David (2015). Towards automated annotation of benthic survey images: variability of human experts and operational modes of automation. PLoS One, 10 (7) e0130312, e0130312. doi: 10.1371/journal.pone.0130312

Improving automated annotation of benthic survey images using wide-band fluorescence

local : UQ:385523

Beijbom, Oscar, Treibitz, Tali, Kline, David I., Eyal, Gal, Khen, Adi, Neal, Benjamin, Loya, Yossi, Mitchell, B. Greg and Kriegman, David (2016). Improving automated annotation of benthic survey images using wide-band fluorescence. Scientific Reports, 6 (1) 23166. doi: 10.1038/srep23166

Using virtual reality to estimate aesthetic values of coral reefs

local : UQ:b53f10b

Vercelloni, Julie, Clifford, Sam, Caley, M. Julian, Pearse, Alan R., Brown, Ross, James, Allan, Christensen, Bryce, Bednarz, Tomasz, Anthony, Ken, Gonzalez-Rivero, Manuel, Mengersen, Kerrie and Peterson, Erin E. (2018). Using virtual reality to estimate aesthetic values of coral reefs. Royal Society Open Science, 5 (4) 172226, 172226. doi: 10.1098/rsos.172226

Risk-sensitive planning for conserving coral reefs under rapid climate change

local : UQ:f5ee4ee

Beyer, Hawthorne L., Kennedy, Emma V., Beger, Maria, Chen, Chaolun Allen, Cinner, Joshua E., Darling, Emily S., Eakin, C. Mark, Gates, Ruth D., Heron, Scott F., Knowlton, Nancy, Obura, David O., Palumbi, Stephen R., Possingham, Hugh P., Puotinen, Marji, Runting, Rebecca K., Skirving, William J., Spalding, Mark, Wilson, Kerrie A., Wood, Sally, Veron, John E. and Hoegh-Guldberg, Ove (2018). Risk-sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters, 11 (6) e12587, e12587. doi: 10.1111/conl.12587

Securing a long-term future for coral reefs

local : UQ:f931842

Hoegh-Guldberg, Ove, Kennedy, Emma V., Beyer, Hawthorne L., McClennen, Caleb and Possingham, Hugh P. (2018). Securing a long-term future for coral reefs. Trends in Ecology & Evolution, 33 (12), 936-944. doi: 10.1016/j.tree.2018.09.006

Leveraging automated image analysis tools to transform our capacity to assess status and trends on coral reefs

local : UQ:47679a9

Williams, Ivor D., Couch, Courtney, Beijbom, Oscar, Oliver, Thomas, Vargas-Angel, Bernardo, Schumacher, Brett and Brainard, Russell (2019). Leveraging automated image analysis tools to transform our capacity to assess status and trends on coral reefs. Frontiers in Marine Science, 6 (APR) 222. doi: 10.3389/fmars.2019.00222

Research Data Collections

local : UQ:289097

Identifiers