Data

SAIVT-Campus Dataset

Queensland University of Technology
QUT SAIVT: Speech, audio, image and video technologies research
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.4225/09/58858a9bd6c6c&rft.title=SAIVT-Campus Dataset&rft.identifier=10.4225/09/58858a9bd6c6c&rft.publisher=Queensland University of Technology&rft.description=SAIVT-Campus Dataset Overview The SAIVT-Campus Database is an abnormal event detection database captured on a university campus, where the abnormal events are caused by the onset of a storm. Contact  or  for more information. Licensing The SAIVT-Campus database is © 2012 QUT and is licensed under the . Attribution To attribute this database, please include the following citation: Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. available at . Acknowledging the Database in your Publications In addition to citing our paper, we kindly request that the following text be included in an acknowledgements section at the end of your publications:  We would like to thank the SAIVT Research Labs at Queensland University of Technology (QUT) for freely supplying us with the SAIVT-Campus database for our research. Installing the SAIVT-Campus database After downloading and unpacking the archive, you should have the following structure:  SAIVT-Campus +-- LICENCE.txt +-- README.txt +-- test_dataset.avi +-- training_dataset.avi +-- Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf Notes The SAIVT-Campus dataset is captured at the Queensland University of Technology, Australia. It contains two video files from real-world surveillance footage without any actors: training_dataset.avi (the training dataset) test_dataset.avi (the test dataset). This dataset contains a mixture of crowd densities and it has been used in the following paper for abnormal event detection: Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. Available at .  This paper is also included with the database (Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf) Both video files are one hour in duration. The normal activities include pedestrians entering or exiting the building, entering or exiting a lecture theatre (yellow door), and going to the counter at the bottom right. The abnormal events are caused by a heavy rain outside, and include people running in from the rain, people walking towards the door to exit and turning back, wearing raincoats, loitering and standing near the door and overcrowded scenes. The rain happens only in the later part of the test dataset. As a result, we assume that the training dataset only contains the normal activities. We have manually made an annotation as below: the training dataset does not have abnormal scenes the test dataset separates into two parts: only normal activities occur from 00:00:00 to 00:47:16 abnormalities are present from 00:47:17 to 01:00:00. We annotate the time 00:47:17 as the start time for the abnormal events, as from this time on we have begun to observe people stop walking or turn back from walking towards the door to exit, which indicates that the rain outside the building has influenced the activities inside the building. Should you have any questions, please do not hesitate to contact . &rft.creator=QUT SAIVT: Speech, audio, image and video technologies research &rft.date=2016&rft.edition=1&rft.relation=http://eprints.qut.edu.au/51041/&rft.coverage=Z Block Level 4 Foyer, QUT Gardens Point Campus&rft_rights=© Queensland University of Technology, 2012.&rft_rights=Creative Commons Attribution-ShareAlike 3.0 Australia License.&rft_subject=Anomaly detection; event detection; &rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Other view details
Other

Creative Commons Attribution-ShareAlike 3.0 Australia License.

© Queensland University of Technology, 2012.

Access:

Other

Contact Information

Postal Address:
Dr Simon Denman
Ph: +61731389329

s.denman@qut.edu.au

Full description

SAIVT-Campus Dataset

Overview

The SAIVT-Campus Database is an abnormal event detection database captured on a university campus, where the abnormal events are caused by the onset of a storm. Contact  or  for more information.

Licensing

The SAIVT-Campus database is © 2012 QUT and is licensed under the .

Attribution

To attribute this database, please include the following citation:
Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. available at .

Acknowledging the Database in your Publications

In addition to citing our paper, we kindly request that the following text be included in an acknowledgements section at the end of your publications: 
We would like to thank the SAIVT Research Labs at Queensland University of Technology (QUT) for freely supplying us with the SAIVT-Campus database for our research.

Installing the SAIVT-Campus database

After downloading and unpacking the archive, you should have the following structure: 

SAIVT-Campus 
+-- LICENCE.txt 
+-- README.txt 
+-- test_dataset.avi 
+-- training_dataset.avi 
+-- Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf

Notes

The SAIVT-Campus dataset is captured at the Queensland University of Technology, Australia.

It contains two video files from real-world surveillance footage without any actors:

  1. training_dataset.avi (the training dataset)
  2. test_dataset.avi (the test dataset).

This dataset contains a mixture of crowd densities and it has been used in the following paper for abnormal event detection:

  • Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. Available at . 
    This paper is also included with the database (Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf) Both video files are one hour in duration.

The normal activities include pedestrians entering or exiting the building, entering or exiting a lecture theatre (yellow door), and going to the counter at the bottom right. The abnormal events are caused by a heavy rain outside, and include people running in from the rain, people walking towards the door to exit and turning back, wearing raincoats, loitering and standing near the door and overcrowded scenes. The rain happens only in the later part of the test dataset.

As a result, we assume that the training dataset only contains the normal activities. We have manually made an annotation as below:

  • the training dataset does not have abnormal scenes
  • the test dataset separates into two parts: only normal activities occur from 00:00:00 to 00:47:16 abnormalities are present from 00:47:17 to 01:00:00. We annotate the time 00:47:17 as the start time for the abnormal events, as from this time on we have begun to observe people stop walking or turn back from walking towards the door to exit, which indicates that the rain outside the building has influenced the activities inside the building. Should you have any questions, please do not hesitate to contact .

This dataset is part of a larger collection

Click to explore relationships graph

Spatial Coverage And Location

text: Z Block Level 4 Foyer, QUT Gardens Point Campus

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers