Data
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.48610/2a8ef30&rft.title=MELArt: Multimodal Entity Linking Evaluation Dataset for Art (Version 1.0)&rft.identifier=RDM ID: 51211f90-9558-11ee-b5f6-0970a7bfad05&rft.publisher=The University of Queensland&rft.description=This dataset encapsulates various entities unique to art, presenting a robust tool tailored to the creation of multi-modal art datasets. We also apply distinct metrics that assess ambiguity and diversity in the data, offering a thorough evaluation of our dataset. We introduce an automated process that facilitates the generation of art datasets, harnessing data from multiple sources (ArtPedia, Wikidata and Wikimedia Commons) to ensure reliability and comprehensiveness. Furthermore, our paper provides extensive statistical data, delineates best practices for the integration of art datasets, and presents a detailed performance analysis of entity linking systems, when applied to domain-specific datasets.&rft.creator=Associate Professor Gianluca Demartini&rft.creator=Associate Professor Gianluca Demartini&rft.creator=Dr Thai Linh Le&rft.creator=Ms Thai Linh Le&rft.date=2023&rft_rights= https://guides.library.uq.edu.au/deposit-your-data/license-reuse-data-agreement&rft_subject=eng&rft_subject=Data management and data science&rft_subject=INFORMATION AND COMPUTING SCIENCES&rft.type=dataset&rft.language=English Access the data

Contact Information

g.demartini@uq.edu.au
School of Electrical Engineering and Computer Science

Full description

This dataset encapsulates various entities unique to art, presenting a robust tool tailored to the creation of multi-modal art datasets. We also apply distinct metrics that assess ambiguity and diversity in the data, offering a thorough evaluation of our dataset. We introduce an automated process that facilitates the generation of art datasets, harnessing data from multiple sources (ArtPedia, Wikidata and Wikimedia Commons) to ensure reliability and comprehensiveness. Furthermore, our paper provides extensive statistical data, delineates best practices for the integration of art datasets, and presents a detailed performance analysis of entity linking systems, when applied to domain-specific datasets.

Issued: 2023

This dataset is part of a larger collection

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
Research Data Collections

local : UQ:289097

Identifiers