Data
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.48610/a9c9def&rft.title=Longield et al_2023_NatComm_Raw&rft.identifier=RDM ID: fc492be0-72cd-11ee-b7d6-63545cfc3c8b&rft.publisher=The University of Queensland&rft.description=Dataset corresponding to the manuscript Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles. Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles coexist within a single cluster suggesting that small synaptic biomolecular condensates could regulate the nanoscale distribution. We perform a large-scale activity-dependent phosphoproteome analysis of hipppocampal neurons and identify Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes LLPS to generate presynaptic nanoclusters whose density and number are regulated by activity. This activiti-dependent diffusion process allows Tau to translocate into the presynapse where forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.&rft.creator=Dr Christopher Small&rft.creator=Dr Mahdie Mollazade&rft.creator=Dr Mahdie Mollazade&rft.creator=Dr Merja Joensuu&rft.creator=Dr Merja Joensuu&rft.creator=Dr Rachel Gormal&rft.creator=Dr Rachel Gormal&rft.creator=Dr Ramon Martinez-Marmol&rft.creator=Dr Ramon Martinez-Marmol&rft.creator=Dr Shanley Longfield&rft.creator=Dr Shanley Longfield&rft.creator=Dr Tristan Wallis&rft.creator=Dr Tristan Wallis&rft.creator=Mrs Shanley Longfield&rft.creator=Mrs Shanley Longfield&rft.creator=Professor Frederic Meunier&rft.creator=Professor Frederic Meunier&rft.date=2023&rft_rights= https://guides.library.uq.edu.au/deposit-your-data/license-reuse-data-agreement&rft_subject=eng&rft_subject=cellular neuroscience&rft_subject=molecular neuroscience&rft_subject=vesicle trafficking&rft_subject=Neurosciences&rft_subject=BIOMEDICAL AND CLINICAL SCIENCES&rft.type=dataset&rft.language=English Access the data

Contact Information

f.meunier@uq.edu.au
Queensland Brain Institute

Full description

Dataset corresponding to the manuscript "Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles". Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles coexist within a single cluster suggesting that small synaptic biomolecular condensates could regulate the nanoscale distribution. We perform a large-scale activity-dependent phosphoproteome analysis of hipppocampal neurons and identify Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes LLPS to generate presynaptic nanoclusters whose density and number are regulated by activity. This activiti-dependent diffusion process allows Tau to translocate into the presynapse where forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.

Issued: 2023

This dataset is part of a larger collection

Click to explore relationships graph
Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles

local : UQ:e44b13f

Longfield, Shanley F., Mollazade, Mahdie, Wallis, Tristan P., Gormal, Rachel S., Joensuu, Merja, Wark, Jesse R., van Waardenberg, Ashley J., Small, Christopher, Graham, Mark E., Meunier, Frédéric A. and Martínez-Mármol, Ramón (2023). Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles. Nature Communications, 14 (1) 7277, 1-20. doi: 10.1038/s41467-023-43130-4

Research Data Collections

local : UQ:289097

Identifiers