Data
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.25909/26184566.v1&rft.title=Kuramoto-Sivashinsky PDE Lyapunov Exponents: Code & Data&rft.identifier=https://doi.org/10.25909/26184566.v1&rft.publisher=The University of Adelaide&rft.description=MATLAB code and the generated datasets for the Lyapunov exponent spectra of the Kuramoto-Sivashinsky PDE, as published in the paper 'Lyapunov Exponents of the Kuramoto-Sivashinsky PDE' in 2019. The files are organised as follows:Codecode/lyapunovexpts.m contains a MATLAB function implementation of Algorithm 1 from the paper, which is the classic algorithm for finding Lyapunov exponents introduced by Benettin et al. (1980) and Shimada and Nagashima (1979).code/dudt_ksperiodic_spectral.m contains a vectorised ODE-discretisation of the Kuramoto-Sivashinsky PDE on a periodic domain using a spectral scheme, which can be used with the standard MATLAB ODE solvers to simulate the dynamics.code/dudt_ksoddperiodic_finitediff.m contains a similar vectorised ODE-discretisation of the Kuramoto-Sivashinsky PDE, but for the odd-periodic domain (u = uxx = 0 on x=0,L) and using a finite-difference scheme with error O(dx2).code/research_kslyaps{.m,.sh} contain the code that ran the computational experiments (using the above Lyapunov exponents code and the Kuramoto-Sivashinsky ODE-discretisations) to generate the Lyapunov spectra data using MATLAB 2016a on the School of Mathematical Sciences' maths1 Linux server in 2017.Datalyapexpts_ksperiodic.zip contains the Lyapunov spectra computed for the Kuramoto-Sivashinsky PDE on the periodic domain. Each file has a filename of the form LXYZpW.txt, and contains the 24 most positive Lyapunov exponents computed on the periodic domain [0, L] where L = XYZ.W. (E.g., L097p4.txt contains the exponents for L=97.4.)lyapexpts_ksoddperiodic.zip contains the Lyapunov spectra computed for the Kuramoto-Sivashinsky PDE on the odd-periodic domain. Each file has a filename of the form LXYZpW.txt, and contains the 24 most positive Lyapunov exponents computed on the odd-periodic domain [0, L] where L=XYZ.W.&rft.creator=Anthony Roberts&rft.creator=Judith Bunder&rft.creator=Russell Edson&rft.creator=Trent Mattner&rft.date=2024&rft_rights=CC-BY-4.0&rft_subject=Lyapunov exponents&rft_subject=dynamical systems&rft_subject=chaos theory&rft_subject=partial differential equations&rft_subject=Kuramoto-Sivashinsky equation&rft_subject=nonlinear dynamics&rft_subject=scientific computing&rft_subject=MATLAB&rft_subject=spatio-temporal chaos&rft_subject=complex systems&rft_subject=Complex systems&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

CC-BY-4.0

Full description

MATLAB code and the generated datasets for the Lyapunov exponent spectra of the Kuramoto-Sivashinsky PDE, as published in the paper 'Lyapunov Exponents of the Kuramoto-Sivashinsky PDE' in 2019. The files are organised as follows:

Code

  • code/lyapunovexpts.m contains a MATLAB function implementation of Algorithm 1 from the paper, which is the classic algorithm for finding Lyapunov exponents introduced by Benettin et al. (1980) and Shimada and Nagashima (1979).
  • code/dudt_ksperiodic_spectral.m contains a vectorised ODE-discretisation of the Kuramoto-Sivashinsky PDE on a periodic domain using a spectral scheme, which can be used with the standard MATLAB ODE solvers to simulate the dynamics.
  • code/dudt_ksoddperiodic_finitediff.m contains a similar vectorised ODE-discretisation of the Kuramoto-Sivashinsky PDE, but for the "odd-periodic" domain (u = uxx = 0 on x=0,L) and using a finite-difference scheme with error O(dx2).
  • code/research_kslyaps{.m,.sh} contain the code that ran the computational experiments (using the above Lyapunov exponents code and the Kuramoto-Sivashinsky ODE-discretisations) to generate the Lyapunov spectra data using MATLAB 2016a on the School of Mathematical Sciences' maths1 Linux server in 2017.

Data

  • lyapexpts_ksperiodic.zip contains the Lyapunov spectra computed for the Kuramoto-Sivashinsky PDE on the periodic domain. Each file has a filename of the form LXYZpW.txt, and contains the 24 most positive Lyapunov exponents computed on the periodic domain [0, L] where L = XYZ.W. (E.g., L097p4.txt contains the exponents for L=97.4.)
  • lyapexpts_ksoddperiodic.zip contains the Lyapunov spectra computed for the Kuramoto-Sivashinsky PDE on the "odd-periodic" domain. Each file has a filename of the form LXYZpW.txt, and contains the 24 most positive Lyapunov exponents computed on the odd-periodic domain [0, L] where L=XYZ.W.

Issued: 2024-07-12

Created: 2024-07-12

This dataset is part of a larger collection

Click to explore relationships graph
Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers