Data

Hyperspectral imaging predicts yield and nitrogen content in grass-legume polyculturesem

The University of Adelaide
Chris Brien (Aggregated by) Huajian Liu (Aggregated by) Kirsten Ball (Aggregated by)
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.25909/62bbaaabd6359&rft.title=Hyperspectral imaging predicts yield and nitrogen content in grass-legume polyculturesem&rft.identifier=https://doi.org/10.25909/62bbaaabd6359&rft.publisher=The University of Adelaide&rft.description=   predict_nutrient.py demonstrates PLSR modelling using Bootstrap validation and it was tested in Python 3.6.  The folder organised_data includes all of the pre-processed data, including reflectance data and laboratory-measured data.  The program conducts the following parts:  1. Trains a PLSR model using the original data and then validates the model using the original data. The validation results will be  saved in a .xlsx file with column names of 'xxx_full'.  2. Trains a PLSR model using the Bootstrap data (re-sampling with replacement) and then validates the model using the original data. The validation results will be  saved in the .xlsx file with column names of 'xxx_bs.  3. Trains a PLSR model using the Bootstrap data and then validates the model using the Bootstrap data. The validation results will be saved  in the .xlsx file with column names 'xxx_a'.  &rft.creator=Chris Brien&rft.creator=Huajian Liu&rft.creator=Kirsten Ball&rft.date=2023&rft_rights=CC-BY-NC-SA-4.0&rft_subject=fertilizer management&rft_subject=plant phenotyping&rft_subject=hyperspectral imaging&rft_subject=machine vision framework&rft_subject=machine learning&rft_subject=Crop and pasture improvement (incl. selection and breeding)&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Non-Commercial Licence view details
CC-BY-NC-SA

CC-BY-NC-SA-4.0

Full description

  

predict_nutrient.py demonstrates PLSR modelling using Bootstrap validation and it was tested in Python 3.6. 

The folder "organised_data" includes all of the pre-processed data, including reflectance data and laboratory-measured data. 

The program conducts the following parts: 

1. Trains a PLSR model using the original data and then validates the model using the original data. The validation results will be 

saved in a .xlsx file with column names of 'xxx_full'. 

2. Trains a PLSR model using the Bootstrap data (re-sampling with replacement) and then validates the model using the original data. The validation results will be 

saved in the .xlsx file with column names of 'xxx_bs. 

3. Trains a PLSR model using the Bootstrap data and then validates the model using the Bootstrap data. The validation results will be saved 

in the .xlsx file with column names 'xxx_a'.  

Issued: 2022-06-29

Created: 2022-06-29

This dataset is part of a larger collection

Click to explore relationships graph
Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers