Data

Data from: Managing seagrass resilience under cumulative dredging affecting light: predicting risk using dynamic Bayesian networks

Queensland University of Technology
Wu, Paul ; McMahon, K. ; Rasheed, M. A ; Kendrick , G. A ; Chartrand, K ; Caley, M. J ; Mengersen, K
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.5061/dryad.f71vq&rft.title=Data from: Managing seagrass resilience under cumulative dredging affecting light: predicting risk using dynamic Bayesian networks&rft.identifier=https://doi.org/10.5061/dryad.f71vq&rft.publisher=Queensland University of Technology&rft.description=Coastal development is contributing to ongoing declines of ecosystems globally. Consequently, understanding the risks posed to these systems, and how they respond to successive disturbances, is paramount for their improved management. We present a risk-based modelling framework for time varying complex systems centred around a dynamic Bayesian network (DBN).  The impact on resilience of dredging disturbances is evaluated using a validated seagrass ecosystem DBN for meadows of the genera Amphibolis (Jurien Bay, WA, Australia), Halophila (Hay Point, Qld, Australia) and Zostera (Gladstone, Qld, Australia).  Data supports the following publication: Wu PP, McMahon K, Rasheed MA, Kendrick GA, York PH, Chartrand K, Caley MJ, Mengersen K. (2017) Managing seagrass resilience under cumulative dredging affecting light: predicting risk using dynamic Bayesian networks. Journal of Applied Ecology, online in advance of print. Data includes: Validation data used to validate the DBN model for Amphibolis in Jurien Bay, Halophila at Hay Point, and Zostera at Gladstone (supporting information S4 through S6, respectively).  Lateral Growth from Existing Individuals Physiological Status of Plants Rate of Recovery in Shoot Density Recruitment Rate from Seeds Seed Density The datasets were submitted to Dryad Digital Repository 29 November 2017. &rft.creator=Wu, Paul &rft.creator=McMahon, K. &rft.creator=Rasheed, M. A &rft.creator=Kendrick , G. A &rft.creator=Chartrand, K &rft.creator=Caley, M. J &rft.creator=Mengersen, K &rft.date=2017&rft.edition=1&rft.relation=https://eprints.qut.edu.au/116652/&rft.coverage=115.041687,-30.294567&rft.coverage=151.256607,-23.833696&rft.coverage=149.295753,-21.292243&rft_rights=© 2017, Wu et al&rft_rights=Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/4.0/&rft_subject=complex systems&rft_subject=cumulative impacts&rft_subject=resilience&rft_subject=seagrass&rft_subject=Dynamic Bayesian Networks&rft_subject=ENVIRONMENTAL SCIENCES&rft_subject=risk modelling&rft_subject=ecosystem management&rft_subject=MATHEMATICAL SCIENCES&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 3.0
http://creativecommons.org/licenses/by/4.0/

© 2017, Wu et al

Access:

Other view details

When using the data, please cite the original publication and this dataset using citations provided here.

Contact Information

Postal Address:
Dr Paul Wu
Ph: +61 7 3138 9828

p.wu@qut.edu.au

Full description

Coastal development is contributing to ongoing declines of ecosystems globally. Consequently, understanding the risks posed to these systems, and how they respond to successive disturbances, is paramount for their improved management. We present a risk-based modelling framework for time varying complex systems centred around a dynamic Bayesian network (DBN).  The impact on resilience of dredging disturbances is evaluated using a validated seagrass ecosystem DBN for meadows of the genera Amphibolis (Jurien Bay, WA, Australia), Halophila (Hay Point, Qld, Australia) and Zostera (Gladstone, Qld, Australia). 

Data supports the following publication:

Wu PP, McMahon K, Rasheed MA, Kendrick GA, York PH, Chartrand K, Caley MJ, Mengersen K. (2017) Managing seagrass resilience under cumulative dredging affecting light: predicting risk using dynamic Bayesian networks. Journal of Applied Ecology, online in advance of print.

Data includes: Validation data used to validate the DBN model for Amphibolis in Jurien Bay, Halophila at Hay Point, and Zostera at Gladstone (supporting information S4 through S6, respectively). 

Lateral Growth from Existing Individuals

Physiological Status of Plants

Rate of Recovery in Shoot Density

Recruitment Rate from Seeds

Seed Density

The datasets were submitted to Dryad Digital Repository 29 November 2017.

This dataset is part of a larger collection

Click to explore relationships graph

115.04169,-30.29457

115.041687,-30.294567

151.25661,-23.8337

151.256607,-23.833696

149.29575,-21.29224

149.295753,-21.292243

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers
  • DOI : 10.5061/DRYAD.F71VQ
  • Local : 10378.3/8085/1018.16986
  • global : 188c3b66-bee5-4eb8-8692-a376e24f1301