Data

Bedload Sediment Transport Dynamics in a Macrotidal Embayment, and Implications for Export to the Southern Great Barrier Reef Shelf

Australian Ocean Data Network
Ryan, D.A. ; Brooke, B.P. ; Bostock, H.C. ; Radke, L.C. ; Siwabessy, P.J.W. ; Margvelashvili, N. ; Skene, D.
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=https://pid.geoscience.gov.au/dataset/ga/69514&rft.title=Bedload Sediment Transport Dynamics in a Macrotidal Embayment, and Implications for Export to the Southern Great Barrier Reef Shelf&rft.identifier=https://pid.geoscience.gov.au/dataset/ga/69514&rft.description=Keppel Bay is a macrotidal embayment on a tectonically stable, tropical coast, which links the Fitzroy River with the Great Barrier Reef continental shelf. Estuaries and deltas act as conduits between catchments and inner shelf environments. Therefore, understanding sediment transport pathways in these complex systems is essential for the management of ecosystems such as coral-reefs that are potentially vulnerable to enhanced river sediment loads. Furthermore, the morphology and sediment dynamics of subtidal sand ridges and dunes are relatively poorly characterised in macrotidal estuaries, particularly in turbid, episodic systems such as the Fitzroy River and Keppel Bay. Our sedimentological analysis of seabed samples, shear-stress modelling and three-dimensional acoustic imaging reveals that Keppel Bay is a mixed wave- and tide-dominated estuarine system. Areas of sediment starvation and shoreward transport characterise the offshore zone, whereas a complex of both active and relict tidal sand ridges, and associated subaqueous dunes, dominate the relatively protected southern Keppel Bay. Transport within this region is highly dynamic and variable, with ebb-dominated sediment transport through tidal channels into the outer bay where there is a switch to wave-dominated shoreward transport. Ultimately, bedload sediments appear to be reworked back inshore and to the north, and are gradually infilling the bedrock-defined embayment. Our characterisation of the Keppel Bay system provides a detailed example of the physiography of the seaward portion of a tide-dominated system, and shows that sediment transport in these areas is influenced by a variable hydrodynamic regime as well as relict channels and bedrock topography.Maintenance and Update Frequency: unknownStatement: Unknown&rft.creator=Ryan, D.A. &rft.creator=Brooke, B.P. &rft.creator=Bostock, H.C. &rft.creator=Radke, L.C. &rft.creator=Siwabessy, P.J.W. &rft.creator=Margvelashvili, N. &rft.creator=Skene, D. &rft.date=2007&rft.coverage=westlimit=150.5; southlimit=-23.666666; eastlimit=151.166666; northlimit=-23.0&rft.coverage=westlimit=150.5; southlimit=-23.666666; eastlimit=151.166666; northlimit=-23.0&rft_rights=&rft_rights=Creative Commons Attribution 4.0 International Licence&rft_rights=CC-BY&rft_rights=4.0&rft_rights=http://creativecommons.org/licenses/&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Australian Government Security ClassificationSystem&rft_rights=https://www.protectivesecurity.gov.au/Pages/default.aspx&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_subject=geoscientificInformation&rft_subject=External Publication&rft_subject=Scientific Journal Paper&rft_subject=sedimentology&rft_subject=marine&rft_subject=AU-QLD&rft_subject=EARTH SCIENCES&rft_subject=Published_External&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

Creative Commons Attribution 4.0 International Licence

CC-BY

4.0

http://creativecommons.org/licenses/

WWW:LINK-1.0-http--link

Australian Government Security ClassificationSystem

https://www.protectivesecurity.gov.au/Pages/default.aspx

WWW:LINK-1.0-http--link

Access:

Open

Contact Information

clientservices@ga.gov.au

Brief description

Keppel Bay is a macrotidal embayment on a tectonically stable, tropical coast, which links the Fitzroy River with the Great Barrier Reef continental shelf. Estuaries and deltas act as conduits between catchments and inner shelf environments. Therefore, understanding sediment transport pathways in these complex systems is essential for the management of ecosystems such as coral-reefs that are potentially vulnerable to enhanced river sediment loads. Furthermore, the morphology and sediment dynamics of subtidal sand ridges and dunes are relatively poorly characterised in macrotidal estuaries, particularly in turbid, episodic systems such as the Fitzroy River and Keppel Bay. Our sedimentological analysis of seabed samples, shear-stress modelling and three-dimensional acoustic imaging reveals that Keppel Bay is a mixed wave- and tide-dominated estuarine system. Areas of sediment starvation and shoreward transport characterise the offshore zone, whereas a complex of both active and relict tidal sand ridges, and associated subaqueous dunes, dominate the relatively protected southern Keppel Bay. Transport within this region is highly dynamic and variable, with ebb-dominated sediment transport through tidal channels into the outer bay where there is a switch to wave-dominated shoreward transport. Ultimately, bedload sediments appear to be reworked back inshore and to the north, and are gradually infilling the bedrock-defined embayment. Our characterisation of the Keppel Bay system provides a detailed example of the physiography of the seaward portion of a tide-dominated system, and shows that sediment transport in these areas is influenced by a variable hydrodynamic regime as well as relict channels and bedrock topography.

Lineage

Maintenance and Update Frequency: unknown
Statement: Unknown

Issued: 2007

This dataset is part of a larger collection

Click to explore relationships graph

151.16667,-23 151.16667,-23.66667 150.5,-23.66667 150.5,-23 151.16667,-23

150.833333,-23.333333

text: westlimit=150.5; southlimit=-23.666666; eastlimit=151.166666; northlimit=-23.0

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
Identifiers