Data

Australian mean land-surface temperature

Geoscience Australia
Haynes, M.W. ; Horowitz, F.G. ; Sambridge, M. ; Gerner, E.J. ; Beardsmore, G.R.
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://pid.geoscience.gov.au/dataset/102260&rft.title=Australian mean land-surface temperature&rft.identifier=http://pid.geoscience.gov.au/dataset/102260&rft.description=The mean land-surface temperature represents an important boundary condition for many geothermal studies. This boundary is particularly important to help constrain the models made to analyse resource systems, many of which are shallow in nature and observe relatively small thermal gradients. Consequently, a mean land-surface temperature map of the Australian continent has been produced from 13 years of MODIS satellite imagery, for the period 2003–2015. The map shows good agreement with independent methods of estimating mean landsurface temperature, including borehole surface-temperature extrapolation and long-term, near-surface ground measurements. In comparison to previously used methods of estimating mean land-surface temperature, our new estimates are up to 12 °C warmer. The MODIS-based method presented in this study provides spatially continuous estimates of land-surface temperature that can be incorporated as the surface thermal boundary condition in geothermal studies. The method is also able to provide a quantification of the uncertainties expected in the application of these estimates for the purposes of thermal modelling.Maintenance and Update Frequency: notPlannedStatement: Not supplied&rft.creator=Haynes, M.W. &rft.creator=Horowitz, F.G. &rft.creator=Sambridge, M. &rft.creator=Gerner, E.J. &rft.creator=Beardsmore, G.R. &rft.date=2016&rft.coverage=westlimit=112; southlimit=-44; eastlimit=154; northlimit=-9&rft.coverage=westlimit=112; southlimit=-44; eastlimit=154; northlimit=-9&rft_rights=&rft_rights=Creative Commons Attribution 4.0 International Licence&rft_rights=CC-BY&rft_rights=4.0&rft_rights=http://creativecommons.org/licenses/&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Australian Government Security ClassificationSystem&rft_rights=https://www.protectivesecurity.gov.au/Pages/default.aspx&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_subject=geoscientificInformation&rft_subject=EARTH SCIENCES&rft_subject=land-surface temperature&rft_subject=MODIS&rft_subject=heat flow&rft_subject=sinusoidal regression&rft_subject=Published_External&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

Creative Commons Attribution 4.0 International Licence

CC-BY

4.0

http://creativecommons.org/licenses/

WWW:LINK-1.0-http--link

Australian Government Security ClassificationSystem

https://www.protectivesecurity.gov.au/Pages/default.aspx

WWW:LINK-1.0-http--link

Access:

Open

Brief description

The mean land-surface temperature represents an important boundary condition for many geothermal studies. This boundary is particularly important to help constrain the models made to analyse resource systems, many of which are shallow in nature and observe relatively small thermal gradients. Consequently, a mean land-surface temperature map of the Australian continent has been produced from 13 years of MODIS satellite imagery, for the period 2003–2015. The map shows good agreement with independent methods of estimating mean landsurface temperature, including borehole surface-temperature extrapolation and long-term, near-surface ground measurements. In comparison to previously used methods of estimating mean land-surface temperature, our new estimates are up to 12 °C warmer. The MODIS-based method presented in this study provides spatially continuous estimates of land-surface temperature that can be incorporated as the surface thermal boundary condition in geothermal studies. The method is also able to provide a quantification of the uncertainties expected in the application of these estimates for the purposes of thermal modelling.

Lineage

Maintenance and Update Frequency: notPlanned
Statement: Not supplied

Created: 04 11 2016

Issued: 23 11 2017

Data time period: 2016-11-04

This dataset is part of a larger collection

Click to explore relationships graph

154,-9 154,-44 112,-44 112,-9 154,-9

133,-26.5

text: westlimit=112; southlimit=-44; eastlimit=154; northlimit=-9

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers