Data

Alice Springs Mulga Flux Data Collection

Terrestrial Ecosystem Research Network
Cleverly, Jamie ; Eamus, Derek ; Faux, Ralph ; Grant, Nicole M ; Li, Zheng
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/888ba337-c58f-4f8c-9438-7c4356e947df&rft.title=Alice Springs Mulga Flux Data Collection&rft.identifier=http://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/888ba337-c58f-4f8c-9438-7c4356e947df&rft.publisher=Terrestrial Ecosystem Research Network&rft.description=This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid Mulga woodland, using eddy covariance techniques. The Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the Acacia aneura canopy, which is 6.5m tall on average. Elevation of the site is 606m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45km distant) Bureau of Meteorology station is 305.9mm but ranges between 100mm in 2009 to 750mm in 2010. Predominant wind directions are from the southeast and east.The extent of the woodland is 11km to the east of the flux station and 16km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years.The instrument mast is 13.7m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6m. Supplementary measurements above the canopy include temperature and humidity (11.6m), windspeed and wind direction (9.25m), downwelling and upwelling shortwave and longwave radiation (12.2m). Precipitation is monitored in a canopy gap (2.5m). Supplementary measurements within and below the canopy include barometric pressure (1m), wind speed (2m, 4.25m and 6.5m), and temperature and humidity (2m, 4.25m and 6m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08m), soil temperature (0.02m – 0.06m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. The site was established in September 2010 in conjunction with the Woodforde River NGCRT Superscience Site and is managed by the University of Technology Sydney. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ This data is also available at http://data.ozflux.org.au .All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .Progress Code: onGoingMaintenance and Update Frequency: biannually&rft.creator=Cleverly, Jamie &rft.creator=Eamus, Derek &rft.creator=Faux, Ralph &rft.creator=Grant, Nicole M &rft.creator=Li, Zheng &rft.date=2021&rft.edition=1.0&rft.relation=https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/&rft.relation=https://doi.org/10.5194/bg-14-2903-2017&rft.relation=https://doi.org/10.5194/bg-13-5895-2016&rft.relation=https://doi.org/10.1002/jgrg.20101&rft.relation=https://doi.org/10.1016/j.agrformet.2013.04.020&rft.coverage=Pine Hill cattle station, near Alice Springs in the Northern Territory.&rft.coverage=northlimit=-22.2828; southlimit=-22.2828; westlimit=133.2493; eastLimit=133.2493; projection=EPSG:4326; uplimit=0.0; downlimit=0.0&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_rights=&rft_rights=TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br /><br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting&rft_subject=climatologyMeteorologyAtmosphere&rft_subject=BIOGEOCHEMICAL PROCESSES&rft_subject=EARTH SCIENCE&rft_subject=SOLID EARTH&rft_subject=GEOCHEMISTRY&rft_subject=LAND PRODUCTIVITY&rft_subject=LAND SURFACE&rft_subject=LAND USE/LAND COVER&rft_subject=EVAPOTRANSPIRATION&rft_subject=ATMOSPHERE&rft_subject=ATMOSPHERIC WATER VAPOR&rft_subject=TERRESTRIAL ECOSYSTEMS&rft_subject=BIOSPHERE&rft_subject=ATMOSPHERIC PRESSURE MEASUREMENTS&rft_subject=ATMOSPHERIC PRESSURE&rft_subject=TURBULENCE&rft_subject=WIND SPEED&rft_subject=WIND DIRECTION&rft_subject=TRACE GASES/TRACE SPECIES&rft_subject=ATMOSPHERIC CHEMISTRY&rft_subject=CARBON DIOXIDE&rft_subject=PHOTOSYNTHETICALLY ACTIVE RADIATION&rft_subject=LONGWAVE RADIATION&rft_subject=SHORTWAVE RADIATION&rft_subject=INCOMING SOLAR RADIATION&rft_subject=ATMOSPHERIC RADIATION&rft_subject=HEAT FLUX&rft_subject=AIR TEMPERATURE&rft_subject=ATMOSPHERIC TEMPERATURE&rft_subject=SURFACE TEMPERATURE&rft_subject=PRECIPITATION AMOUNT&rft_subject=PRECIPITATION&rft_subject=HUMIDITY&rft_subject=SOIL MOISTURE/WATER CONTENT&rft_subject=SOIL TEMPERATURE&rft_subject=ATMOSPHERIC SCIENCES&rft_subject=EARTH SCIENCES&rft_subject=ECOLOGICAL APPLICATIONS&rft_subject=ENVIRONMENTAL SCIENCES&rft_subject=Ecosystem Function&rft_subject=ENVIRONMENTAL SCIENCE AND MANAGEMENT&rft_subject=Environmental Monitoring&rft_subject=SOIL SCIENCES&rft_subject=Alice Springs Mulga Flux Station&rft_subject=Kipp&Zonen CNR4&rft_subject=Kipp&Zonen CNR1&rft_subject=mass concentration of carbon dioxide in air&rft_subject=surface upward latent heat flux&rft_subject=downward heat flux at ground level in soil&rft_subject=surface downwelling longwave flux in air&rft_subject=surface upwelling longwave flux in air&rft_subject=surface downwelling shortwave flux in air&rft_subject=surface upwelling shortwave flux in air&rft_subject=thickness of rainfall amount&rft_subject=relative humidity&rft_subject=specific humidity&rft_subject=soil moisture content&rft_subject=air temperature&rft_subject=soil temperature&rft_subject=water vapor partial pressure in air&rft_subject=water vapor saturation deficit in air&rft_subject=wind from direction&rft_subject=wind speed&rft_subject=surface air pressure&rft_subject=surface net downward radiative flux&rft_subject=surface upward sensible heat flux&rft_subject=mass concentration of water vapor in air&rft_subject=surface upward flux of available energy&rft_subject=magnitude of surface downward stress&rft_subject=mole fraction of water vapor in air&rft_subject=monin-obukhov length&rft_subject=specific humidity saturation deficit in air&rft_subject=eastward wind&rft_subject=northward wind&rft_subject=vertical wind&rft_subject=ecosystem respiration&rft_subject=water evapotranspiration flux&rft_subject=gross primary productivity of biomass expressed as carbon&rft_subject=net ecosystem exchange&rft_subject=net ecosystem productivity&rft_subject=surface upward mole flux of carbon dioxide&rft_subject=surface friction velocity&rft_subject=surface upward mass flux of carbon dioxide expressed as carbon due to emission from natural sources&rft_subject=upward mole flux of carbon dioxide due inferred from storage&rft_subject=Point Resolution&rft_subject=1 minute - < 1 hour&rft_subject=AU-ASM&rft_subject=Mulga woodlands&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure.

Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.

Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting

Access:

Open view details

unclassified

Contact Information

Street Address:
Terrestrial Ecosystem Research Network
Building 1019, 80 Meiers Rd
QLD 4068
Australia
Ph: +61 7 3365 9097

esupport@tern.org.au

Brief description

This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid Mulga woodland, using eddy covariance techniques.

The Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the Acacia aneura canopy, which is 6.5m tall on average. Elevation of the site is 606m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45km distant) Bureau of Meteorology station is 305.9mm but ranges between 100mm in 2009 to 750mm in 2010. Predominant wind directions are from the southeast and east.The extent of the woodland is 11km to the east of the flux station and 16km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years.The instrument mast is 13.7m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6m. Supplementary measurements above the canopy include temperature and humidity (11.6m), windspeed and wind direction (9.25m), downwelling and upwelling shortwave and longwave radiation (12.2m). Precipitation is monitored in a canopy gap (2.5m). Supplementary measurements within and below the canopy include barometric pressure (1m), wind speed (2m, 4.25m and 6.5m), and temperature and humidity (2m, 4.25m and 6m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08m), soil temperature (0.02m – 0.06m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. The site was established in September 2010 in conjunction with the Woodforde River NGCRT Superscience Site and is managed by the University of Technology Sydney.
For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/

This data is also available at http://data.ozflux.org.au .

Lineage

All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .

Progress Code: onGoing
Maintenance and Update Frequency: biannually

Notes

Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
The TERN Alice Springs Mulga site is managed by the University of Technology Sydney, and is funded by TERN.
Purpose
The purpose of the Alice Springs Mulga flux station is to :
measure the exchanges of carbon dioxide, water vapour and energy between a semi-arid mulga (Acacia aneura) ecosystem and the atmosphere using micrometeorological techniques
study ecosystem, hydrologic and ecophysiologic responses to rainfall variability
evaluate the evapotranspiratory cost of assimilation
study the partitioning of ecosystem metabolism between the mulga canopy, a seasonal mixed understory (C3 and C4, grass and shrub) and soil components
utilise the measurements for paramterising a Soil-Vegetation-Atmosphere Transfer (SVAT) model to evaluate climate change scenarios in North-Central Australia
utilise the measurements for parameterising and validating remote sensing measurements over semi-arid mulga ecosystems
utilise the measurements for parmaterising and validating the Community Atmosphere-Biosphere Land Exchange (CABLE) model
Data Quality Information

Data Quality Assessment Scope
local : dataset
If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include (i) range checks for plausible limits, (ii) spike detection, (iii) dependency on other variables and (iv) manual rejection of date ranges. Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO2 and H2O signal strength, depending upon the configuration of the IRGA. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017.<br> For further information about the software (PyFluxPro) used to process and quality control the flux data, see https://github.com/OzFlux/PyFluxPro/wiki.

Created: 2010-09-03

Issued: 2021-09-20

Modified: 2014-07-14

Data time period: 2010-09-03

This dataset is part of a larger collection

133.2493,-22.2828

133.2493,-22.2828

text: Pine Hill cattle station, near Alice Springs in the Northern Territory.

Subjects
1 minute - < 1 hour | AIR TEMPERATURE | ATMOSPHERE | ATMOSPHERIC CHEMISTRY | ATMOSPHERIC PRESSURE | ATMOSPHERIC PRESSURE MEASUREMENTS | ATMOSPHERIC RADIATION | Atmospheric Sciences | ATMOSPHERIC TEMPERATURE | ATMOSPHERIC WATER VAPOR | AU-ASM | Alice Springs Mulga Flux Station | BIOGEOCHEMICAL PROCESSES | BIOSPHERE | CARBON DIOXIDE | EARTH SCIENCE | Earth Sciences | Ecological Applications | Environmental Science and Management | Environmental Sciences | EVAPOTRANSPIRATION | Ecosystem Function | Environmental Monitoring | GEOCHEMISTRY | HEAT FLUX | HUMIDITY | INCOMING SOLAR RADIATION | Kipp&Zonen CNR1 | Kipp&Zonen CNR4 | LAND PRODUCTIVITY | LAND SURFACE | LAND USE/LAND COVER | LONGWAVE RADIATION | Mulga woodlands | PHOTOSYNTHETICALLY ACTIVE RADIATION | PRECIPITATION | PRECIPITATION AMOUNT | Point Resolution | SHORTWAVE RADIATION | SOIL MOISTURE/WATER CONTENT | Soil Sciences | SOIL TEMPERATURE | SOLID EARTH | SURFACE TEMPERATURE | TERRESTRIAL ECOSYSTEMS | TRACE GASES/TRACE SPECIES | TURBULENCE | WIND DIRECTION | WIND SPEED | air temperature | climatologyMeteorologyAtmosphere | downward heat flux at ground level in soil | eastward wind | ecosystem respiration | gross primary productivity of biomass expressed as carbon | magnitude of surface downward stress | mass concentration of carbon dioxide in air | mass concentration of water vapor in air | mole fraction of water vapor in air | monin-obukhov length | net ecosystem exchange | net ecosystem productivity | northward wind | relative humidity | soil moisture content | soil temperature | specific humidity | specific humidity saturation deficit in air | surface air pressure | surface downwelling longwave flux in air | surface downwelling shortwave flux in air | surface friction velocity | surface net downward radiative flux | surface upward flux of available energy | surface upward latent heat flux | surface upward mass flux of carbon dioxide expressed as carbon due to emission from natural sources | surface upward mole flux of carbon dioxide | surface upward sensible heat flux | surface upwelling longwave flux in air | surface upwelling shortwave flux in air | thickness of rainfall amount | upward mole flux of carbon dioxide due inferred from storage | vertical wind | water evapotranspiration flux | water vapor partial pressure in air | water vapor saturation deficit in air | wind from direction | wind speed |

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover