Data

QCAT LiDAR global localization dataset

Commonwealth Scientific and Industrial Research Organisation
Borges, Paulo ; Guo, JD
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.25919/5bff3be8c0d24&rft.title=QCAT LiDAR global localization dataset&rft.identifier=https://doi.org/10.25919/5bff3be8c0d24&rft.publisher=Commonwealth Scientific and Industrial Research Organisation&rft.description=We introduce a datasets including a globally consistent point cloud map of QCAT site and 4 sets of static scans under different conditions, together with a manually labelled ground truth transformation with respect to the global map. This dataset was designed to compare and benchmark different place recognition approaches. \n&rft.creator=Borges, Paulo &rft.creator=Guo, JD &rft.date=2018&rft.edition=v2&rft.coverage=westlimit=152.9108888888889; southlimit=-27.52911111111111; eastlimit=152.91197222222223; northlimit=-27.526138888888887; projection=WGS84&rft_rights=CSIRO Data Licence https://research.csiro.au/dap/licences/csiro-data-licence/&rft_rights=Data is accessible online and may be reused in accordance with licence conditions&rft_rights=All Rights (including copyright) CSIRO 2018.&rft_subject=Data61 CSIRO ICRA RAL LiDAR localization&rft_subject=Assistive robots and technology&rft_subject=Control engineering, mechatronics and robotics&rft_subject=ENGINEERING&rft_subject=Autonomous vehicle systems&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Other view details
Other

CSIRO Data Licence
https://research.csiro.au/dap/licences/csiro-data-licence/

Data is accessible online and may be reused in accordance with licence conditions

All Rights (including copyright) CSIRO 2018.

Access:

Open view details

Accessible for free

Contact Information



Brief description

We introduce a datasets including a globally consistent point cloud map of QCAT site and 4 sets of static scans under different conditions, together with a manually labelled ground truth transformation with respect to the global map. This dataset was designed to compare and benchmark different place recognition approaches.

Available: 2018-11-29

152.91197,-27.52614 152.91197,-27.52911 152.91089,-27.52911 152.91089,-27.52614 152.91197,-27.52614

152.91143055556,-27.527625

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers