Data

1-deoxysphingosine DMS data set

Queensland University of Technology
Poad, Berwyck ; Maccarone, Alan ; Yu, Haibo ; Mitchell, Todd ; Saied, Essa ; Arenz, Christoph ; Hornemann, Thorsten ; Bull, James ; Bieske, Evan ; Blanksby, Stephen
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.4225/09/5acaf109865be&rft.title=1-deoxysphingosine DMS data set&rft.identifier=10.4225/09/5acaf109865be&rft.publisher=Queensland University of Technology&rft.description=This data set accomanies the manuscript Differential-Mobility Spectrometry of 1-deoxysphingosine Isomers: New Insights into the Gas Phase Structures of Ionized Lipids by Berwyck L. J. Poad, Alan T. Maccarone, Haibo Yu, Todd W. Mitchell, Essa M. Saied, Christoph Arenz, Thorsten Hornemann, James N. Bull, Evan J. Bieske, Stephen J. Blanksby. ABSTRACT: Separation and structural identification of lipids remains a major challenge for contemporary lipidomics. Regioisomeric lipids differing only in position(s) of unsaturation are not differentiated by conventional liquid chromatography-mass spectrometry approaches leading to the incomplete, or sometimes incorrect, assignation of molecular structure. Here we describe an investigation of the gas phase separations by differential mobility spectrometry (DMS) of a series of synthetic analogues of the recently described 1-deoxysphingosine. The dependence of the DMS behavior on the position of the carbon-carbon double bond within the ionized lipid is systematically explored and compared to trends from complementary investigations, including collision cross sections measured by drift tube ion mobility, reaction efficiency with ozone, and molecular dynamics simulations. Consistent trends across these modes of interrogation point to the importance of direct, through-space interactions between the charge site and the carbon-carbon double bond. Differences in the geometry and energetics of this intra-molecular interaction underpin DMS separations and influence reactivity trends between regioisomers. Importantly, the disruption and reformation of these intra-molecular solvation interactions during DMS are proposed to be the causative factor in the observed separations of ionized lipids which are shown to have otherwise identical collision cross sections. These findings provide key insights into the strengths and limitations of current ion-mobility technologies for lipid isomer separations and can thus guide a more systematic approach to improved analytical separations in lipidomics. &rft.creator=Poad, Berwyck &rft.creator=Maccarone, Alan &rft.creator=Yu, Haibo &rft.creator=Mitchell, Todd &rft.creator=Saied, Essa &rft.creator=Arenz, Christoph &rft.creator=Hornemann, Thorsten &rft.creator=Bull, James &rft.creator=Bieske, Evan &rft.creator=Blanksby, Stephen &rft.date=2018&rft.edition=1&rft.coverage=Brisbane, Australia; Wollongong, Australia; Melbourne, Australia &rft_rights=© Queensland University of Technology, 2018&rft_rights=Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/4.0/&rft_subject=Molecular Dynamics&rft_subject=Ion Mobility&rft_subject=Ozonolysis&rft_subject=CHEMICAL SCIENCES&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 3.0
http://creativecommons.org/licenses/by/4.0/

© Queensland University of Technology, 2018

Access:

Other

Contact Information

Postal Address:
Dr Berwyck Poad
Ph: +61 7 3138 3340

Berwyck.poad@qut.edu.au

Full description

This data set accomanies the manuscript "Differential-Mobility Spectrometry of 1-deoxysphingosine Isomers: New Insights into the Gas Phase Structures of Ionized Lipids" by Berwyck L. J. Poad, Alan T. Maccarone, Haibo Yu, Todd W. Mitchell, Essa M. Saied, Christoph Arenz, Thorsten Hornemann, James N. Bull, Evan J. Bieske, Stephen J. Blanksby.

ABSTRACT:
Separation and structural identification of lipids remains a major challenge for contemporary lipidomics. Regioisomeric lipids differing only in position(s) of unsaturation are not differentiated by conventional liquid chromatography-mass spectrometry approaches leading to the incomplete, or sometimes incorrect, assignation of molecular structure. Here we describe an investigation of the gas phase separations by differential mobility spectrometry (DMS) of a series of synthetic analogues of the recently described 1-deoxysphingosine.
The dependence of the DMS behavior on the position of the carbon-carbon double bond within the ionized lipid is systematically explored and compared to trends from complementary investigations, including collision cross sections measured by drift tube ion mobility, reaction efficiency with ozone, and molecular dynamics simulations. Consistent trends across these modes of interrogation point to the importance of direct, through-space interactions between the charge site and the carbon-carbon double bond. Differences in the geometry and energetics of this intra-molecular interaction underpin DMS separations and influence reactivity trends between regioisomers. Importantly, the disruption and reformation of these intra-molecular solvation interactions during DMS are proposed to be the causative factor in the observed separations of ionized lipids which are shown to have otherwise identical collision cross sections. These findings provide key insights into the strengths and limitations of current ion-mobility technologies for lipid isomer separations and can thus guide a more systematic approach to improved analytical separations in lipidomics.

Data time period: 2015 to 2017

This dataset is part of a larger collection

Click to explore relationships graph
Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers