Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/350841]Researchers: Prof Miles Davenport (Principal investigator) , Dr Ruy Ribeiro , Prof Alan Perelson
Brief description HIV currently infects ~40 million people world-wide, causing ~3 million deaths in 2003, mainly in the world's poorest countries. A cheap, effective vaccine seems the best means of preventing the spread of the epidemic. The two main approaches to vaccination are either to make antibodies (which bind to and inactivate the virus), or killer T cells (which kill infected cells). Many of these vaccines are now being tested in monkeys. The results of killer T cell vaccination trials have been both encouraging and disappointing. The vaccines do not appear able to prevent the monkeys from getting infected with the virus. However, in many cases even though the monkeys become infected with HIV, they do not get the usual disease associated with AIDS, and hence live with rather than die from this infection. The aims of this project are to use statistical analysis, and more complex mathematical and computer models to try to analyse the data generated by these vaccine trials and to understand how these partially effective vaccines help control virus. For example, even if a vaccine does not prevent infection, we can investigate whether it slowed viral growth, or increased killing of infected cells, and if so, whether an increase in this response could be effective. In preliminary work we have analysed data from a vaccination trial performed in Boston. The results of this study suggest that the reason vaccinated monkeys still become infected is that the killer T cells produced by the vaccine do not appear to activate for the first 10 days of infection. In these first 10 days the virus grows normally and is able to establish a foothold for continuing infection. By contrast, we find that antibodies act extremely early after infection. The methods we propose have not been used before to study vaccines, and by studying the kinetics of the virus and immune response from a large number of vaccine trials we hope to help identify the optimal vaccine design.
Funding Amount $AUD 238,000.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 350841
- PURL : https://purl.org/au-research/grants/nhmrc/350841