Data

Trace elements concentrations measured in detrital sediment samples collected during the IN2017-V01 voyage of the RV Investigator

Australian Ocean Data Network
Creac'h, L., Noble, T. and Townsend, A. ; CREAC'H, LAYLA ; NOBLE, TARYN ; TOWNSEND, ASHLEY
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://data.aad.gov.au/metadata/records/AAS_4419_Trace_elements_detrital_sediment_MC&rft.title=Trace elements concentrations measured in detrital sediment samples collected during the IN2017-V01 voyage of the RV Investigator&rft.identifier=http://data.aad.gov.au/metadata/records/AAS_4419_Trace_elements_detrital_sediment_MC&rft.publisher=Australian Antarctic Data Centre&rft.description=Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; (Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer (MC), were sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. Back at the home laboratory (IMAS, UTAS, Hobart, Australia), sediment samples were dried in an oven at 40°C. Three hundred mg of dry sediment was then homogenised and vortexed for 10-sec with 12 mL of a reductive solution of 0.005M hydroxylamine hydrochloride (HH) / 1.5% Acetic Acid (AA) / 0.001M Na-EDTA / 0.033M NaOH, at pH 4 (Huang et al., 2021). The sediment was then leached a second time (to ensure the removal of all oxides and excess minerals, i.e. to isolate the detrital fraction) with 15 mL of 0.02M HH, 25% AA solution and agitated using a rotisserie (20 rpm) overnight (Wilson et al., 2018). Samples were then centrifuged, rinsed with Milli-Q water 3 times, and dried in an oven at 50°C. About 50 mg of resulting dry (detrital) sediment was ground, weighed into a Teflon vial, and digested with a strong acid mixture. First, the sediment was oxidized with a mixture of concentrated HNO3 and 30% H2O2 (1:1). Samples were then digested in open vials using 10 mL HNO3, 4 mL HCl, and 2 mL HF, at 180°C until close to dryness. Digested residues were converted to nitric form before being oxidised with a mixture of 1 mL HNO3 and 1 mL HClO4 at 220°C until fully desiccated. Samples were finally re-dissolved in 4 mL 7.5 M HNO3. A 400 μL aliquot was removed from the 4 mL digest solution and diluted ~2500 times in 2% HNO3 for trace metals analysis by Sector Field Inductively Coupled Mass Spectrometry (SF-ICP-MS, Thermo Fisher Scientific, Bremen, Germany) at the Central Science Laboratory (UTAS, Hobart, Australia). Indium was added as internal standard (In, 100 ppb). 88Sr, 89Y, 95Mo, 107Ag, 109Ag, 111Cd, 133Cs, 137Ba, 146Nd, 169Tm, 171Yb, 185Re, 187Re, 205Tl, 208Pb, 232Th, 238U, 23Na, 24Mg, 27Al, 31P, 32S, 42Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu and 66Zn were analysed using multiple spectral resolutions. Element quantification was performed via external calibration using multi-element calibration solutions (MISA suite, QCD Analysts, Spring Lake, NJ, USA). Raw intensities were blank and dilution corrected. References Armand, L. K., O’Brien, P. E., Armbrecht, L., Baker, H., Caburlotto, A., Connell, T., … Young, A. (2018). Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report. ANU Research Publications Huang, H., Gutjahr, M., Kuhn, G., Hathorne, E. C., and Eisenhauer, A. (2021). Efficient Extraction of Past Seawater Pb and Nd Isotope Signatures From Southern Ocean Sediments. Geochemistry, Geophysics, Geosystems, 22(3), 1–22. Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., … Escutia, C. (2018). Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature, 561(7723), 383.Progress Code: completedStatement: At least 2 standards and a blank were included in every digestion batch, which typically involved 24 samples. Samples were analysed in batches of 10 and bracketed by blanks and a Quality Control (Standard, 100 ppb).&rft.creator=Creac'h, L., Noble, T. and Townsend, A. &rft.creator=CREAC'H, LAYLA &rft.creator=NOBLE, TARYN &rft.creator=TOWNSEND, ASHLEY &rft.date=2022&rft.coverage=westlimit=115; southlimit=-65; eastlimit=120; northlimit=-64&rft.coverage=westlimit=115; southlimit=-65; eastlimit=120; northlimit=-64&rft_rights=This metadata record is publicly available.&rft_rights=These data are publicly available for download from the provided URL. A copy of the referenced report is included in the download file.&rft_rights= https://creativecommons.org/licenses/by/4.0/legalcode&rft_rights=This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=AAS_4419_Trace_elements_detrital_sediment_MC when using these data. http://creativecommons.org/licenses/by/4.0/).&rft_rights=Portable Network Graphic&rft_rights=https://i.creativecommons.org/l/by/3.0/88x31.png&rft_rights=Creative Commons by Attribution logo&rft_rights=Attribution 4.0 International (CC BY 4.0)&rft_rights=Legal code for Creative Commons by Attribution 4.0 International license&rft_rights=Attribution 4.0 International (CC BY 4.0)&rft_rights= https://creativecommons.org/licenses/by/4.0/legalcode&rft_subject=oceans&rft_subject=geoscientificInformation&rft_subject=EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > TRACE ELEMENTS&rft_subject=EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT COMPOSITION&rft_subject=EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT CHEMISTRY&rft_subject=RV INVESTIGATOR&rft_subject=ICP-MS > Inductively Coupled Plasma Mass Spectrometer&rft_subject=SEDIMENT CORERS&rft_subject=SHIPS&rft_subject=LABORATORY&rft_subject=AMD/AU&rft_subject=AMD&rft_subject=CEOS&rft_subject=GEOGRAPHIC REGION > POLAR&rft_subject=OCEAN > SOUTHERN OCEAN&rft_subject=CONTINENT > ANTARCTICA > WILKES LAND&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Other view details
Unknown

https://creativecommons.org/licenses/by/4.0/legalcode

This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/).

Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=AAS_4419_Trace_elements_detrital_sediment_MC when using these data.
http://creativecommons.org/licenses/by/4.0/).

Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0/legalcode

This metadata record is publicly available.

These data are publicly available for download from the provided URL. A copy of the referenced report is included in the download file.

Portable Network Graphic

https://i.creativecommons.org/l/by/3.0/88x31.png

Creative Commons by Attribution logo

Attribution 4.0 International (CC BY 4.0)

Legal code for Creative Commons by Attribution 4.0 International license

Access:

Other

Brief description

Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; (Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer (MC), were sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. Back at the home laboratory (IMAS, UTAS, Hobart, Australia), sediment samples were dried in an oven at 40°C. Three hundred mg of dry sediment was then homogenised and vortexed for 10-sec with 12 mL of a reductive solution of 0.005M hydroxylamine hydrochloride (HH) / 1.5% Acetic Acid (AA) / 0.001M Na-EDTA / 0.033M NaOH, at pH 4 (Huang et al., 2021). The sediment was then leached a second time (to ensure the removal of all oxides and excess minerals, i.e. to isolate the detrital fraction) with 15 mL of 0.02M HH, 25% AA solution and agitated using a rotisserie (20 rpm) overnight (Wilson et al., 2018). Samples were then centrifuged, rinsed with Milli-Q water 3 times, and dried in an oven at 50°C. About 50 mg of resulting dry (detrital) sediment was ground, weighed into a Teflon vial, and digested with a strong acid mixture. First, the sediment was oxidized with a mixture of concentrated HNO3 and 30% H2O2 (1:1). Samples were then digested in open vials using 10 mL HNO3, 4 mL HCl, and 2 mL HF, at 180°C until close to dryness. Digested residues were converted to nitric form before being oxidised with a mixture of 1 mL HNO3 and 1 mL HClO4 at 220°C until fully desiccated. Samples were finally re-dissolved in 4 mL 7.5 M HNO3. A 400 μL aliquot was removed from the 4 mL digest solution and diluted ~2500 times in 2% HNO3 for trace metals analysis by Sector Field Inductively Coupled Mass Spectrometry (SF-ICP-MS, Thermo Fisher Scientific, Bremen, Germany) at the Central Science Laboratory (UTAS, Hobart, Australia). Indium was added as internal standard (In, 100 ppb). 88Sr, 89Y, 95Mo, 107Ag, 109Ag, 111Cd, 133Cs, 137Ba, 146Nd, 169Tm, 171Yb, 185Re, 187Re, 205Tl, 208Pb, 232Th, 238U, 23Na, 24Mg, 27Al, 31P, 32S, 42Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu and 66Zn were analysed using multiple spectral resolutions. Element quantification was performed via external calibration using multi-element calibration solutions (MISA suite, QCD Analysts, Spring Lake, NJ, USA). Raw intensities were blank and dilution corrected. References Armand, L. K., O’Brien, P. E., Armbrecht, L., Baker, H., Caburlotto, A., Connell, T., … Young, A. (2018). Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report. ANU Research Publications Huang, H., Gutjahr, M., Kuhn, G., Hathorne, E. C., and Eisenhauer, A. (2021). Efficient Extraction of Past Seawater Pb and Nd Isotope Signatures From Southern Ocean Sediments. Geochemistry, Geophysics, Geosystems, 22(3), 1–22. Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., … Escutia, C. (2018). Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature, 561(7723), 383.

Lineage

Progress Code: completed
Statement: At least 2 standards and a blank were included in every digestion batch, which typically involved 24 samples. Samples were analysed in batches of 10 and bracketed by blanks and a Quality Control (Standard, 100 ppb).

Notes

Purpose
These data were collected in order to determine the geochemistry of the detrital fraction of the sediment.

Data time period: 2017-01-14 to 2021-12-31

This dataset is part of a larger collection

Click to explore relationships graph

120,-64 120,-65 115,-65 115,-64 120,-64

117.5,-64.5

text: westlimit=115; southlimit=-65; eastlimit=120; northlimit=-64

Other Information
Download the dataset. (GET DATA > DIRECT DOWNLOAD)

uri : https://data.aad.gov.au/eds/5503/download

Identifiers
  • global : AAS_4419_Trace_elements_detrital_sediment_MC