Data

Subantarctic zone oceanography - SAZ Project 1997-1998 - Arsenic Data

Australian Ocean Data Network
Featherstone, A. and Trull, T.W. ; FEATHERSTONE, ALISON ; TRULL, THOMAS WILLIAM
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://catalogue-aodn.prod.aodn.org.au/geonetwork/srv/eng/search?uuid=ASAC_2256_Arsenic&rft.title=Subantarctic zone oceanography - SAZ Project 1997-1998 - Arsenic Data&rft.identifier=http://catalogue-aodn.prod.aodn.org.au/geonetwork/srv/eng/search?uuid=ASAC_2256_Arsenic&rft.publisher=Australian Antarctic Data Centre&rft.description=Oceanographic processes in the subantarctic region contribute crucially to the physical and biogeochemical aspects of the global climate system. To explore and quantify these contributions, the Antarctic Cooperative Research Centre (CRC) organised the SAZ Project, a multidisciplinary, multiship investigation carried out south of Australia in the austral summer of 1997-1998. Taken from the abstracts of the referenced papers: The development of a semi-automated batch HG-AFS method for the shipboard determination of As(III), As(V),MMA and DMA is described. Procedures in the analytical sequence including addition of NaBH4 to samples, cooling and heating the U-trap used for pre-concentration and separation of the arsines, and logging the AFS output are automated. Overall control of the automated tasks into a logical analytical sequence is achieved using a commercially available data acquisition and control package, workbenchmac(TM). Further modifications required for the method to be adapted to shipboard use, including the use of a hydrogen generator, are also detailed. This method shows a number of advantages over a previously reported manual HG-AFS method including, shorter sample throughput time, increased precision and most significantly, ease of use under shipboard conditions. The semi-automated method was operated on the RSV Aurora Australis during a Southern Ocean voyage in March 1998. Arsenic measurements from a surface transect between 42 and 55 degrees S along 141 degrees 30 minutes E, are presented. Application of the method to more routine laboratory use is also discussed. Distribution of the arsenic species total inorganic arsenic [As(V+III)], arsenite [As(III)], monomethyl arsenic(MMA), andd dimethyl arsenic (DMA) was studied in the Subantarctic Zone (SAZ) of the Southern Ocean, south of Australia, during the austral autumn (March 1998). As (V) was the dominant arsenic species in both vertical profiles and surface waters along the meridional transect 42-55 degrees S, 141 degrees 30' E. It was also the only species observed at depths greater than 600 m. Concentrations of the reduced arsenic species (As(III), MMA, and DMA) were low in these waters compared with other oceanic sites with similar concentrations of chlorophyl a. As(III) concentrations could not be reliably quantified at any sites (less than 0.04 nM). The greatest conversion of As(V) to biological species was found at the surface in the Subtropical Convergence Zone(2.5%) and decreased heading southward to 1% in the Polar Front (PF). While the decline in methyl arsenic concentrations was broadly associated with water temperature and measures of biological production, slightly different trends were found in the SAZ and PF. North of the Subantarctic Front (SAF), methyl arsenic concentrations were well correlated with water temperature, while south of the front, no such relation existed. In addition, the ratio DMA/MMA increased south of the SAF, associated with a change in the microalgal community composition. Low water temperature, phosphate replete conditions, and low biological productivity in the Southern Ocean all contribute to the concentrations of biologically produced arsenic species in this region being among the lowest reported for oceanic waters.Progress Code: completedStatement: See the referenced papers for more information.&rft.creator=Featherstone, A. and Trull, T.W. &rft.creator=FEATHERSTONE, ALISON &rft.creator=TRULL, THOMAS WILLIAM &rft.date=2012&rft.coverage=westlimit=141.5; southlimit=-55.0; eastlimit=141.5; northlimit=-42.0&rft.coverage=westlimit=141.5; southlimit=-55.0; eastlimit=141.5; northlimit=-42.0&rft_rights=This metadata record is publicly available.&rft_rights=Copies of the referenced publications are available for download from the provided URL to AAD staff only.&rft_rights= https://creativecommons.org/licenses/by/4.0/legalcode&rft_rights=This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=ASAC_2256_Arsenic when using these data. http://creativecommons.org/licenses/by/4.0/).&rft_rights=Portable Network Graphic&rft_rights=https://i.creativecommons.org/l/by/3.0/88x31.png&rft_rights=Creative Commons by Attribution logo&rft_rights=Attribution 4.0 International (CC BY 4.0)&rft_rights=Legal code for Creative Commons by Attribution 4.0 International license&rft_rights=Attribution 4.0 International (CC BY 4.0)&rft_rights= https://creativecommons.org/licenses/by/4.0/legalcode&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Other view details
Unknown

https://creativecommons.org/licenses/by/4.0/legalcode

This data set conforms to the CCBY Attribution License
(http://creativecommons.org/licenses/by/4.0/).

Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=ASAC_2256_Arsenic when using these data.
http://creativecommons.org/licenses/by/4.0/).

Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0/legalcode

This metadata record is publicly available.

Copies of the referenced publications are available for download from the provided URL to AAD staff only.

Portable Network Graphic

https://i.creativecommons.org/l/by/3.0/88x31.png

Creative Commons by Attribution logo

Attribution 4.0 International (CC BY 4.0)

Legal code for Creative Commons by Attribution 4.0 International license

Access:

Other

Contact Information

metadata@aad.gov.au

Brief description

Oceanographic processes in the subantarctic region contribute crucially to the physical and biogeochemical aspects of the global climate system. To explore and quantify these contributions, the Antarctic Cooperative Research Centre (CRC) organised the SAZ Project, a multidisciplinary, multiship investigation carried out south of Australia in the austral summer of 1997-1998.

Taken from the abstracts of the referenced papers:

The development of a semi-automated batch HG-AFS method for the shipboard determination of As(III), As(V),MMA and DMA is described. Procedures in the analytical sequence including addition of NaBH4 to samples, cooling and heating the U-trap used for pre-concentration and separation of the arsines, and logging the AFS output are automated. Overall control of the automated tasks into a logical analytical sequence is achieved using a commercially available data acquisition and control package, workbenchmac(TM). Further modifications required for the method to be adapted to shipboard use, including the use of a hydrogen generator, are also detailed.
This method shows a number of advantages over a previously reported manual HG-AFS method including, shorter sample throughput time, increased precision and most significantly, ease of use under shipboard conditions.
The semi-automated method was operated on the RSV Aurora Australis during a Southern Ocean voyage in March 1998. Arsenic measurements from a surface transect between 42 and 55 degrees S along 141 degrees 30 minutes E, are presented. Application of the method to more routine laboratory use is also discussed.

Distribution of the arsenic species total inorganic arsenic [As(V+III)], arsenite [As(III)], monomethyl arsenic(MMA), andd dimethyl arsenic (DMA) was studied in the Subantarctic Zone (SAZ) of the Southern Ocean, south of Australia, during the austral autumn (March 1998). As (V) was the dominant arsenic species in both vertical profiles and surface waters along the meridional transect 42-55 degrees S, 141 degrees 30' E. It was also the only species observed at depths greater than 600 m. Concentrations of the reduced arsenic species (As(III), MMA, and DMA) were low in these waters compared with other oceanic sites with similar concentrations of chlorophyl a. As(III) concentrations could not be reliably quantified at any sites (less than 0.04 nM). The greatest conversion of As(V) to "biological" species was found at the surface in the Subtropical Convergence Zone(2.5%) and decreased heading southward to 1% in the Polar Front (PF). While the decline in methyl arsenic concentrations was broadly associated with water temperature and measures of biological production, slightly different trends were found in the SAZ and PF. North of the Subantarctic Front (SAF), methyl arsenic concentrations were well correlated with water temperature, while south of the front, no such relation existed. In addition, the ratio DMA/MMA increased south of the SAF, associated with a change in the microalgal community composition. Low water temperature, phosphate replete conditions, and low biological productivity in the Southern Ocean all contribute to the concentrations of biologically produced arsenic species in this region being among the lowest reported for oceanic waters.

Lineage

Progress Code: completed
Statement: See the referenced papers for more information.

Data time period: 1998-03-01 to 1998-03-31

141.5,-42 141.5,-55 141.5,-55 141.5,-42 141.5,-42

141.5,-48.5

text: westlimit=141.5; southlimit=-55.0; eastlimit=141.5; northlimit=-42.0

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover