grant

Structure-function studies of ion permeation and selectivity in recombinant glycine receptor channels [ 2003 - 2005 ]

Also known as: How molecular structure determines how ions are selected and pass through neurotransmitter channels

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/222830]

Researchers: E/Pr Peter Barry (Principal investigator) ,  A/Pr Andrew Moorhouse

Brief description Ligand-gated ion channels (LGICs) are members of a superfamily of receptor channels, with very significant structural and functional similarities, which play a major role in fast synaptic neurotransmission within the brain and spinal cord, and underlying the complex behaviour of the nervous system, but when dysfunctional can result in major neurological problems. Glycine is one of the two most important inhibitory neurotransmitters in the central nervous system. Impaired glycine-mediated neurotransmission underlies a range of inherited neurological diseases and already, it has been shown that the human disorder, familial Startle disease (hyperekplexia) occurs because of point mutations that have impaired the permeation and activation of the glycine receptor (GlyR). Similarly, certain epilepsies are now known to be caused by mutations in, or close to, the channel region in the excitatory acetylcholine receptors (AChRs), which affect channel activation and ion permeation. However, because of their very significant structural and functional similarities, information obtained in one member of the LGIC family of receptors has strong potential application to the other members and the GlyR with its simpler structure has certain advantages for investigation. The first aim of this project is to investigate how the molecular biological structure of these ion channels controls permeation, how it affects how different ions are selectively allowed to move through it and how it affects channel activation. A second related aim is to learn more about the process of desensitization of GlyR receptors, whereby a sustained presence of a high concentration of agonist can cause a reduction in receptor response. A third aim is to specifically investigate the mechanisms underlying the mode of molecular disruption resulting from two new Startle disease mutations, which, in addition to their own inherent clinical value, can also give general information about receptor function.

Funding Amount $AUD 331,300.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]