Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/350284]Researchers: Prof John Wade (Principal investigator) , Prof Geoffrey Tregear , Prof Ross Bathgate
Brief description Human Gene 2 (H2) relaxin is a peptide hormone structurally related to insulin and has numerous biological actions related to its roles during pregnancy. It exerts these primarily by inducing the breakdown of collagen and the formation of new blood vessels while simultaneously stimulating tissue growth and inhibiting cell death. Its functions have led to several potential therapeutic roles for relaxin being explored. These include the treatment of fibrotic disorders and peripheral vascular disease. H2 relaxin is the principal expression product in vivo and has been shown to exert a wide range of physiological responses beyond those normally associated with pregnancy. We have recently discovered another human - H3 - relaxin that is expressed primarily in the brain which strongly suggests a neuropeptide role. Surprisingly, H2 and 3 relaxins each act via different G-protein coupled receptors. We will perform detailed structure-function studies to determine how these relaxins impart their specific biological actions. Modern chemical synthesis protocols will be used to prepare each of these complex peptides in adequate quantities for detailed secondary and tertiary structural study. Analogues containing modified residues and global domains will be prepared and assayed for characteristic relaxin agonist and antagonist activity. Sophisticated biomolecular interaction analyses will be used to identify differences in receptor binding regions for the two relaxins. The results, together with those obtained by three-dimensional structural analysis using NMR spectroscopy, will allow us to ultimately define the key features of the H2 and 3 hormones that are responsible for selective receptor binding and specific relaxin activity. We will then be able to design smaller, more stable, orally active relaxin mimetics. Such compounds will have great potential for therapeutic application in the treatment of fibrosis or as biological and pharmacological probes of relaxin action.
Funding Amount $AUD 489,000.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 350284
- PURL : https://purl.org/au-research/grants/nhmrc/350284