Data

Sparse Principal Component Analysis with Preserved Sparsity Pattern

The University of Western Australia
Seghouane, Abd-Krim ; Shokouhi, Navid ; Koch, Inge
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.24433/co.4593141.v1&rft.title=Sparse Principal Component Analysis with Preserved Sparsity Pattern&rft.identifier=10.24433/co.4593141.v1&rft.publisher=Code Ocean&rft.description=MATLAB code + demo to reproduce results for Sparse Principal Component Analysis with Preserved Sparsity. This code calculates the principal loading vectors for any given high-dimensional data matrix. The advantage of this method over existing sparse-PCA methods is that it can produce principal loading vectors with the same sparsity pattern for any number of principal components. Please see Readme.md for more information.&rft.creator=Seghouane, Abd-Krim &rft.creator=Shokouhi, Navid &rft.creator=Koch, Inge &rft.date=2019&rft.relation=http://research-repository.uwa.edu.au/en/publications/fbe0a676-a360-4c90-b915-c1ec06c1bb97&rft_subject=machine-learning&rft_subject=sparse&rft_subject=Computer Science&rft_subject=principal-component-analysis&rft_subject=Algorithm&rft.type=dataset&rft.language=English Access the data

Access:

Open

Full description

MATLAB code + demo to reproduce results for "Sparse Principal Component Analysis with Preserved Sparsity". This code calculates the principal loading vectors for any given high-dimensional data matrix. The advantage of this method over existing sparse-PCA methods is that it can produce principal loading vectors with the same sparsity pattern for any number of principal components. Please see Readme.md for more information.

Notes

Associated Persons
Abd-Krim Seghouane (Creator); Navid Shokouhi (Creator)

Issued: 2019-02-14

This dataset is part of a larger collection

Click to explore relationships graph
Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers