Data

Soil and Landscape Grid National Soil Attribute Maps - Cation Exchange Capacity (3" resolution) - Release 1

Commonwealth Scientific and Industrial Research Organisation
Malone, Brendan
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.25919/pkva-gf85&rft.title=Soil and Landscape Grid National Soil Attribute Maps - Cation Exchange Capacity (3 resolution) - Release 1&rft.identifier=https://doi.org/10.25919/pkva-gf85&rft.publisher=Commonwealth Scientific and Industrial Research Organisation&rft.description=This is Version 1 of the Australian Soil Cation Exchange Capacity product of the Soil and Landscape Grid of Australia.\n\nThe map gives a modelled estimate of the spatial distribution of cation exchange capacity in soils across Australia.\n\nThe Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).\n\nDetailed information about the Soil and Landscape Grid of Australia can be found at - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html\n\nAttribute Definition: Cation Exchange Capacity\nUnits: meq/100g;\nPeriod (temporal coverage; approximately): 1970-2022;\nSpatial resolution: 3 arc seconds (approx 90m);\nTotal number of gridded maps for this attribute: 18;\nNumber of pixels with coverage per layer: 2007M (49200 * 40800);\nData license : Creative Commons Attribution 4.0 (CC BY);\nTarget data standard: GlobalSoilMap specifications;\nFormat: Cloud Optimised GeoTIFF;\nLineage: Version 1 Soil and landscape Grid of Australia (Grundy et al. 2015), produced digital mapping of Effective Cation Exchange Capacity (ECEC) which is defined as the total amount of exchangeable bases which are mostly sodium, potassium, calcium and magnesium (collectively termed as bases) in non-acidic soils and bases plus aluminium and hydrogen in acidic soils. \n\nThis product, Soil and Landscape Grid National Soil Attribute Maps - Cation Exchange Capacity, described here entails the use of those data pertaining to those data with CEC measurement. \n\nThis dataset is made of soil measurements using the following methods as described in Rayment and Lyons (2010): method not recorded (1096), 15A1 (161), 15A2 (365), 15B1 (553), 15B2 (34), 15C1 (3229), 15D1 (265), 15E1 (28), 15K1 (376). The distribution of these sites, colour-coded by each method is shown on Figure 1.\n\nTo complement the CEC measurement data, we used data cases (12474) where there is a measured CEC together with soil texture and soil organic carbon co-located measurements. A machine learning pedotransfer function model with these data, together with spatial covariates was used to extend the geographic spread and density of CEC data in order to potentially improve digital soil mapping efforts.\n\nExtensive data processing was involved post data extraction from the SoilDataFederator\n\nSpatial modelling is underpinned by the Cubist (Quinlan 1993) machine learning algorithm.\n\nThe spatial modelling integrates both measurement CEC data and CEC data derived by pedotransfer function. The derived CEC have an associated uncertainty and this is incorporated into the spatial model via a simple monte-carlo approach.\n\nThe spatial model included a soil depth interval term in order to exploit covariance relationships of soil information within a soil profile. Thus modelling is considered a full soil profile predictive modelling framework. \n\nPrediction uncertainties in this work were done using an approach based on local-errors and clustering (UNEEC) method developed by Shrestha and Solomatine (2006).\n\nSoil maps of predictions and associated uncertainties (expressed as lower and upper prediction limits for 90% confidence) were generated for the following depth intervals: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm, 100-200cm.\n\nAll processing for the generation of these products was undertaken using the R programming language. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.\n\nCode - https://github.com/AusSoilsDSM/SLGA\nObservation data - https://esoil.io/TERNLandscapes/Public/Pages/SoilDataFederator/SoilDataFederator.html\nCovariate rasters - https://esoil.io/TERNLandscapes/Public/Pages/COGs\n&rft.creator=Malone, Brendan &rft.date=2024&rft.edition=v2&rft.coverage=westlimit=112.91246805555556; southlimit=-43.642475; eastlimit=153.6399663888889; northlimit=-9.99830972222222; projection=WGS84&rft_rights=Creative Commons Attribution 4.0 International Licence https://creativecommons.org/licenses/by/4.0/&rft_rights=Data is accessible online and may be reused in accordance with licence conditions&rft_rights=All Rights (including copyright) CSIRO 2022.&rft_subject=TERN_Soils&rft_subject=TERN_Soils_DSM&rft_subject=Soil&rft_subject=TERN&rft_subject=Raster&rft_subject=Attribute&rft_subject=Available&rft_subject=Cation&rft_subject=CEC&rft_subject=Cation Exchange Capacity&rft_subject=Continental&rft_subject=DSM&rft_subject=Global Soil Map&rft_subject=Spatial modelling&rft_subject=3-dimensional soil mapping&rft_subject=Spatial uncertainty&rft_subject=Soil Maps&rft_subject=Digital Soil Mapping&rft_subject=SLGA&rft_subject=Soil sciences not elsewhere classified&rft_subject=Soil sciences&rft_subject=ENVIRONMENTAL SCIENCES&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
https://creativecommons.org/licenses/by/4.0/

Data is accessible online and may be reused in accordance with licence conditions

All Rights (including copyright) CSIRO 2022.

Access:

Open view details

Accessible for free

Contact Information



Brief description

This is Version 1 of the Australian Soil Cation Exchange Capacity product of the Soil and Landscape Grid of Australia.

The map gives a modelled estimate of the spatial distribution of cation exchange capacity in soils across Australia.

The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).

Detailed information about the Soil and Landscape Grid of Australia can be found at - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html

Attribute Definition: Cation Exchange Capacity
Units: meq/100g;
Period (temporal coverage; approximately): 1970-2022;
Spatial resolution: 3 arc seconds (approx 90m);
Total number of gridded maps for this attribute: 18;
Number of pixels with coverage per layer: 2007M (49200 * 40800);
Data license : Creative Commons Attribution 4.0 (CC BY);
Target data standard: GlobalSoilMap specifications;
Format: Cloud Optimised GeoTIFF;
Lineage: Version 1 Soil and landscape Grid of Australia (Grundy et al. 2015), produced digital mapping of Effective Cation Exchange Capacity (ECEC) which is defined as the total amount of exchangeable bases which are mostly sodium, potassium, calcium and magnesium (collectively termed as bases) in non-acidic soils and bases plus aluminium and hydrogen in acidic soils.

This product, Soil and Landscape Grid National Soil Attribute Maps - Cation Exchange Capacity, described here entails the use of those data pertaining to those data with CEC measurement.

This dataset is made of soil measurements using the following methods as described in Rayment and Lyons (2010): method not recorded (1096), 15A1 (161), 15A2 (365), 15B1 (553), 15B2 (34), 15C1 (3229), 15D1 (265), 15E1 (28), 15K1 (376). The distribution of these sites, colour-coded by each method is shown on Figure 1.

To complement the CEC measurement data, we used data cases (12474) where there is a measured CEC together with soil texture and soil organic carbon co-located measurements. A machine learning pedotransfer function model with these data, together with spatial covariates was used to extend the geographic spread and density of CEC data in order to potentially improve digital soil mapping efforts.

Extensive data processing was involved post data extraction from the SoilDataFederator

Spatial modelling is underpinned by the Cubist (Quinlan 1993) machine learning algorithm.

The spatial modelling integrates both measurement CEC data and CEC data derived by pedotransfer function. The derived CEC have an associated uncertainty and this is incorporated into the spatial model via a simple monte-carlo approach.

The spatial model included a soil depth interval term in order to exploit covariance relationships of soil information within a soil profile. Thus modelling is considered a full soil profile predictive modelling framework.

Prediction uncertainties in this work were done using an approach based on local-errors and clustering (UNEEC) method developed by Shrestha and Solomatine (2006).

Soil maps of predictions and associated uncertainties (expressed as lower and upper prediction limits for 90% confidence) were generated for the following depth intervals: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm, 100-200cm.

All processing for the generation of these products was undertaken using the R programming language. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Code - https://github.com/AusSoilsDSM/SLGA
Observation data - https://esoil.io/TERNLandscapes/Public/Pages/SoilDataFederator/SoilDataFederator.html
Covariate rasters - https://esoil.io/TERNLandscapes/Public/Pages/COGs

Available: 2024-08-28

Data time period: to 2022-07-27

This dataset is part of a larger collection

Click to explore relationships graph

153.63997,-9.99831 153.63997,-43.64248 112.91247,-43.64248 112.91247,-9.99831 153.63997,-9.99831

133.27621722223,-26.820392361111