Data

Soil and Landscape Grid Digital Soil Property Maps for Western Australia (3" resolution)

Commonwealth Scientific and Industrial Research Organisation
Holmes, Karen ; Griffin, Ted ; Odgers, Nathan
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.4225/08/5aaf364c54ccf&rft.title=Soil and Landscape Grid Digital Soil Property Maps for Western Australia (3" resolution)&rft.identifier=10.4225/08/5aaf364c54ccf&rft.publisher=Commonwealth Scientific and Industrial Research Organisation (CSIRO)&rft.description=These are products of the Soil and Landscape Grid of Australia Facility generated through disaggregation of the Western Australian soil mapping. There are 9 soil attribute products available from the Soil Facility: Available Water Holding Capacity - Volumetric (AWC); Bulk Density - Whole Earth (BDw); Bulk Density - Fine Earth (BDf); Clay (CLY); Course Fragments (CFG); Electrical Conductivity (ECD); pH Water (pHw); Sand (SND); Silt (SLT). Each soil attribute product is a collection of 6 depth slices. Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the Specifications of the GlobalSoilMap. The DSMART tool (Odgers et al. 2014) tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes (Holmes et al. Submitted). The soil class maps were then used to produce corresponding soil property surfaces using the PROPR tool (Odgers et al. 2015; Odgers et al. Submitted). Legacy mapping was compiled for the state of WA from surveys ranging in map scale from 1:20,000 to 1:2,000,000 (Schoknecht et al., 2004). The polygons are attributed with the soils and proportions of soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making. Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) and kriging based on site data by Viscarra Rossel et al. (Submitted). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. In Prep). Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications.The soil attribute maps are generated using novel spatial modelling and digital soil mapping techniques to disaggregate legacy soil mapping. Legacy soil mapping: Polygon-based soil mapping for Western Australia’s agricultural zone was developed via WA’s Department of Agriculture and Food (Schoknecht et al., 2004). Seventy-three soil classes (termed ‘WA soil groups’ Schoknecht and Pathan, 2013) have been defined to capture the range of variation in soil profiles across this area. While legacy soil mapping does not explicitly map the distribution of these soil classes, estimates of their percentage composition and associated soil properties are available for each soil landscape map unit (polygon). Disaggregation of soil classes: The DSMART algorithm (version 1, described in Odgers et al. 2014) was used to produce fine-resolution raster predictions for the probability of occurrence of each soil class. This uses random virtual sampling within each map unit (with sampling weighted by the expected proportions of each soil class) to build predictions for the distribution of soil classes based on relationships with environmental covariate layers (e.g. elevation, terrain attributes, climate, remote sensing vegetation indices, radiometrics). The algorithm was run 100 times then averaged to create probabilistic estimates for soil class spatial distributions. Soil property predictions: The PROPR algorithm (Odgers et al. 2015) was used to generate soil property maps (and their associated uncertainty) using reference soil property data and the soil class probability maps create through the above DSMART disaggregation step. Western Australia’s expert defined typical range of soil properties by soil class was used to provide reference soil properties to PROPR. These estimates were made separately for each physiographic zone across WA, and are based on available profile data and surveyor experience. Uncertainty bounds were determined by the minimum and maximum soil properties at the ‘qualified soil group’ level, and the property value of the most common soil in the map unit was used to define the typical soil property. This methodology was previously developed to meet the specifications of McKenzie et al. (2012) and provides expert soil surveyor estimates for map unit area composition and representative profile properties. Depth averaging was applied to the regional variant profile data to obtain property values at the specified GlobalSoilMap depth intervals. Then area-weighted soil property averages were calculated for each subgroup soil class. This process is documented further in Odgers et al. (Submitted).&rft.creator=Holmes, Karen &rft.creator=Griffin, Ted &rft.creator=Odgers, Nathan &rft.date=2018&rft.edition=v4&rft.coverage=northlimit=-13.742917; southlimit=-35.134583; westlimit=112.999583; eastLimit=129.095417; uplimit=; downlimit=-2.0; projection=WGS84&rft_rights=All Rights (including copyright) CSIRO 2014.&rft_rights=Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/&rft_subject=TERN_Soils&rft_subject=TERN_Soils_DSM&rft_subject=Soil&rft_subject=TERN&rft_subject=Raster&rft_subject=Attributes&rft_subject=Western Australia&rft_subject=DSM&rft_subject=Global Soil Map&rft_subject=spatial modelling&rft_subject=3-dimensional soil mapping&rft_subject=spatial uncertainty&rft_subject=DSMART&rft_subject=disaggregated&rft_subject=Available Water Capacity&rft_subject=Bulk Density&rft_subject=Clay&rft_subject=Electrical Conductivity&rft_subject=Effective Cation Exchange Capacity&rft_subject=Coarse Fragments&rft_subject=Organic Carbon&rft_subject=pH&rft_subject=Sand&rft_subject=Silt&rft_subject=EC&rft_subject=ECEC&rft_subject=BD&rft_subject=pH - Water&rft_subject=SLGA&rft_subject=Soil Sciences not elsewhere classified&rft_subject=ENVIRONMENTAL SCIENCES&rft_subject=SOIL SCIENCES&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution
https://creativecommons.org/licenses/by/4.0/

All Rights (including copyright) CSIRO 2014.

Access:

Open view details

Data is accessible online and may be reused in accordance with licence conditions

Brief description

These are products of the Soil and Landscape Grid of Australia Facility generated through disaggregation of the Western Australian soil mapping. There are 9 soil attribute products available from the Soil Facility: Available Water Holding Capacity - Volumetric (AWC); Bulk Density - Whole Earth (BDw); Bulk Density - Fine Earth (BDf); Clay (CLY); Course Fragments (CFG); Electrical Conductivity (ECD); pH Water (pHw); Sand (SND); Silt (SLT).

Each soil attribute product is a collection of 6 depth slices. Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the Specifications of the GlobalSoilMap.

The DSMART tool (Odgers et al. 2014) tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes (Holmes et al. Submitted). The soil class maps were then used to produce corresponding soil property surfaces using the PROPR tool (Odgers et al. 2015; Odgers et al. Submitted). Legacy mapping was compiled for the state of WA from surveys ranging in map scale from 1:20,000 to 1:2,000,000 (Schoknecht et al., 2004). The polygons are attributed with the soils and proportions of soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making.

Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) and kriging based on site data by Viscarra Rossel et al. (Submitted). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. In Prep).

Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications.

Lineage

The soil attribute maps are generated using novel spatial modelling and digital soil mapping techniques to disaggregate legacy soil mapping.

Legacy soil mapping:
Polygon-based soil mapping for Western Australia’s agricultural zone was developed via WA’s Department of Agriculture and Food (Schoknecht et al., 2004). Seventy-three soil classes (termed ‘WA soil groups’ Schoknecht and Pathan, 2013) have been defined to capture the range of variation in soil profiles across this area. While legacy soil mapping does not explicitly map the distribution of these soil classes, estimates of their percentage composition and associated soil properties are available for each soil landscape map unit (polygon).

Disaggregation of soil classes:
The DSMART algorithm (version 1, described in Odgers et al. 2014) was used to produce fine-resolution raster predictions for the probability of occurrence of each soil class. This uses random virtual sampling within each map unit (with sampling weighted by the expected proportions of each soil class) to build predictions for the distribution of soil classes based on relationships with environmental covariate layers (e.g. elevation, terrain attributes, climate, remote sensing vegetation indices, radiometrics). The algorithm was run 100 times then averaged to create probabilistic estimates for soil class spatial distributions.

Soil property predictions:
The PROPR algorithm (Odgers et al. 2015) was used to generate soil property maps (and their associated uncertainty) using reference soil property data and the soil class probability maps create through the above DSMART disaggregation step.

Western Australia’s expert defined typical range of soil properties by soil class was used to provide reference soil properties to PROPR. These estimates were made separately for each physiographic zone across WA, and are based on available profile data and surveyor experience. Uncertainty bounds were determined by the minimum and maximum soil properties at the ‘qualified soil group’ level, and the property value of the most common soil in the map unit was used to define the typical soil property. This methodology was previously developed to meet the specifications of McKenzie et al. (2012) and provides expert soil surveyor estimates for map unit area composition and representative profile properties. Depth averaging was applied to the regional variant profile data to obtain property values at the specified GlobalSoilMap depth intervals. Then area-weighted soil property averages were calculated for each subgroup soil class. This process is documented further in Odgers et al. (Submitted).

This dataset is part of a larger collection

129.09542,-13.74292 129.09542,-35.13458 112.99958,-35.13458 112.99958,-13.74292 129.09542,-13.74292

121.0475,-24.43875

Identifiers