Data

Single Nucleus RNA Sequencing of Pre-Malignant Liver Reveals Disease-Associated Hepatocyte State with HCC Prognostic Potential

The University of Western Australia
Carlessi, Rodrigo ; Denisenko, Elena ; Boslem, Ebru ; Köhn-Gaone, Julia ; Main, Nathan ; Abu Bakar, N. Dianah B. ; Shirolkar, Gayatri ; Jones, Matt ; Poppe, Daniel ; Dwyer, Benjamin J. ; Jackaman, Connie ; Tjiam, Christian ; Lister, Ryan ; Karin, Michael ; Fallowfield, Jonathan A. ; Kendall, Timothy J. ; Forbes, Stuart J. ; Olynyk, John K. ; Yeoh, George ; Forrest, Alistair ; Ramm, Grant ; Febbraio, Mark A. ; Tirnitz-Parker, Nina
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.26182/bhy9-q334&rft.title=Single Nucleus RNA Sequencing of Pre-Malignant Liver Reveals Disease-Associated Hepatocyte State with HCC Prognostic Potential&rft.identifier=10.26182/bhy9-q334&rft.publisher=Gene Expression Omnibus (NCBI)&rft.description=Expression profiling by high throughput sequencing. To identify and characterize cell states associated with the chronically injured pre-malignant liver, we employed a droplet-based (10x chromium) single nucleus transcriptomics approach. Hepatic nuclei were isolated and profiled from (a) healthy mice fed normal chow, (b) mice subjected to a choline-deficient, ethionine-supplemented (CDE) diet, and (c) mice provided with thioacetamide (TAA) in the drinking water. We obtained a total of 40,748 single nucleus transcriptomes (16,222 healthy; 14,507 CDE; and 10,019 TAA) from three mice per condition.&rft.creator=Carlessi, Rodrigo &rft.creator=Denisenko, Elena &rft.creator=Boslem, Ebru &rft.creator=Köhn-Gaone, Julia &rft.creator=Main, Nathan &rft.creator=Abu Bakar, N. Dianah B. &rft.creator=Shirolkar, Gayatri &rft.creator=Jones, Matt &rft.creator=Poppe, Daniel &rft.creator=Dwyer, Benjamin J. &rft.creator=Jackaman, Connie &rft.creator=Tjiam, Christian &rft.creator=Lister, Ryan &rft.creator=Karin, Michael &rft.creator=Fallowfield, Jonathan A. &rft.creator=Kendall, Timothy J. &rft.creator=Forbes, Stuart J. &rft.creator=Olynyk, John K. &rft.creator=Yeoh, George &rft.creator=Forrest, Alistair &rft.creator=Ramm, Grant &rft.creator=Febbraio, Mark A. &rft.creator=Tirnitz-Parker, Nina &rft.date=2022&rft.relation=http://research-repository.uwa.edu.au/en/publications/c19c49ec-1de0-4a2e-83f1-12ec08f427fe&rft.type=dataset&rft.language=English Access the data

Access:

Open

Full description

Expression profiling by high throughput sequencing. To identify and characterize cell states associated with the chronically injured pre-malignant liver, we employed a droplet-based (10x chromium) single nucleus transcriptomics approach. Hepatic nuclei were isolated and profiled from (a) healthy mice fed normal chow, (b) mice subjected to a choline-deficient, ethionine-supplemented (CDE) diet, and (c) mice provided with thioacetamide (TAA) in the drinking water. We obtained a total of 40,748 single nucleus transcriptomes (16,222 healthy; 14,507 CDE; and 10,019 TAA) from three mice per condition.

Notes

External Organisations
Harry Perkins Institute of Medical Research; Curtin University; The Kids Research Institute Australia (Telethon Kids Institute); Edith Cowan University; Monash University (Australia); University of California San Diego; University of Edinburgh; Queensland Institute of Medical Research
Associated Persons
Gayatri Shirolkar (Creator)Rodrigo Carlessi (Creator); Ebru Boslem (Creator); Julia Köhn-Gaone (Creator); Nathan Main (Creator); N. Dianah B. Abu Bakar (Creator); Benjamin J. Dwyer (Creator); Connie Jackaman (Creator); Michael Karin (Creator); Jonathan A. Fallowfield (Creator); Timothy J. Kendall (Creator); Stuart J. Forbes (Creator); John K. Olynyk (Creator); Grant Ramm (Creator); Mark A. Febbraio (Creator)

Issued: 2022-04-12

This dataset is part of a larger collection

Click to explore relationships graph

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers