grant

Signalling of muscle force by Golgi tendon organs during exercise and fatigue [ 2002 - 2004 ]

Also known as: How does exercise alter the perception of muscle force?

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/194307]

Researchers: John Gregory (Principal investigator) ,  Prof David Morgan Prof Uwe Proske

Brief description It is a common experience for objects being carried to feel heavier and tasks needing muscular effort to become more difficult as one becomes tired and the muscles fatigue during exertion. The sensation of muscle force depends on two factors. One, a sense of the effort required to perform a task, is generated in the central nervous system and. The other, a sense of the force actually developed by the muscles, is generated in the muscles themselves by signals from sensory receptors called Golgi tendon organs. The sensation of muscle force and the heaviness of objects results from a combination of both senses, but the contribution of each is unknown. The aim of the project is to determine whether the disturbance of force sense in fatigued muscles results from changes in the way tendon organs signal the actual force developed by the muscles. This will be important for understanding how force sense is disturbed following exercise and in disease states, and for understanding the normal way muscle force is sensed in everyday situations. Disturbances of force sense after exercise will be documented in human subjects by asking them to generate what they perceive to be equal forces in both arms or legs, before and after one limb only is exercised. Errors in force estimation will show up as mismatches between the two limbs. The difficulty with human experiments is that the signals generated by tendon organs cannot be measured directly, but only inferred, perhaps wrongly. This difficulty will be overcome by measuring tendon organ activity directly in anaesthetised animals, where the muscles will be electrically stimulated to perform exercise similar to that in the human experiments. A change in tendon organ signalling will be taken to mean that similar changes in humans could be responsible for disturbances of force sense. In further experiments, the mechanism of the changes will be explored.

Funding Amount $AUD 181,320.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]