Data

Sedimentological Signatures of the Sub-Amery Ice Shelf Circulation

Australian Ocean Data Network
Hener, M.A. ; Post, A.L. ; O'Brien, P.E. ; Craven, M. ; Truswell, E.M. ; Roberts, D.A.
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=https://pid.geoscience.gov.au/dataset/ga/61487&rft.title=Sedimentological Signatures of the Sub-Amery Ice Shelf Circulation&rft.identifier=https://pid.geoscience.gov.au/dataset/ga/61487&rft.description=Two sediment cores collected from beneath the Amery Ice Shelf, East Antarctica describe the physical sedimentation patterns beneath an existing major embayed ice shelf. Core AM01b was collected from a site of basal freezing, contrasting with core AM02, collected from a site of basal melting. Both cores comprise Holocene siliceous muddy ooze (SMO), however, AM01b also recovered interbedded siliciclastic mud, sand and gravel with inclined bedding in its lower 27 cm. This interval indicates an episode of variable but strong current activity before SMO sedimentation became dominant. 14C ages corrected for old surface ages are consistent with previous dating of marine sediments in Prydz Bay. However, the basal age of AM01b of 28250 ± 230 14C yr bp probably results from greater contamination by recycled organic matter. Lithology, 14C surface ages, absolute diatom abundance, and the diatom assemblage are used as indicators of sediment transport pathways beneath the ice shelf. The transport pathways suggested from these indicators do not correspond to previous models of the basal melt/freeze pattern. This indicates that the overturning baroclinic circulation beneath the Amery Ice Shelf (near-bed inflow-surface outflow) is a more important influence on basal melt/freeze and sediment distributions than the barotropic circulation that produces inflow in the east and outflow in the west of the ice front. Localized topographic (ice draft and bed elevation) variations are likely to play a dominant role in the resulting sub-ice shelf melt and sediment distribution.Maintenance and Update Frequency: unknownStatement: Unknown&rft.creator=Hener, M.A. &rft.creator=Post, A.L. &rft.creator=O'Brien, P.E. &rft.creator=Craven, M. &rft.creator=Truswell, E.M. &rft.creator=Roberts, D.A. &rft.date=2007&rft.coverage=westlimit=79; southlimit=-73.0; eastlimit=67; northlimit=-68.0&rft.coverage=westlimit=79; southlimit=-73.0; eastlimit=67; northlimit=-68.0&rft_rights=&rft_rights=Creative Commons Attribution 4.0 International Licence&rft_rights=CC-BY&rft_rights=4.0&rft_rights=http://creativecommons.org/licenses/&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Australian Government Security ClassificationSystem&rft_rights=https://www.protectivesecurity.gov.au/Pages/default.aspx&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_subject=geoscientificInformation&rft_subject=External Publication&rft_subject=Scientific Journal Paper&rft_subject=sedimentology&rft_subject=Antarctic data&rft_subject=marine&rft_subject=AQ&rft_subject=EARTH SCIENCES&rft_subject=Published_External&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

Creative Commons Attribution 4.0 International Licence

CC-BY

4.0

http://creativecommons.org/licenses/

WWW:LINK-1.0-http--link

Australian Government Security ClassificationSystem

https://www.protectivesecurity.gov.au/Pages/default.aspx

WWW:LINK-1.0-http--link

Access:

Open

Contact Information

clientservices@ga.gov.au

Brief description

Two sediment cores collected from beneath the Amery Ice Shelf, East Antarctica describe the physical sedimentation patterns beneath an existing major embayed ice shelf. Core AM01b was collected from a site of basal freezing, contrasting with core AM02, collected from a site of basal melting. Both cores comprise Holocene siliceous muddy ooze (SMO), however, AM01b also recovered interbedded siliciclastic mud, sand and gravel with inclined bedding in its lower 27 cm. This interval indicates an episode of variable but strong current activity before SMO sedimentation became dominant. 14C ages corrected for old surface ages are consistent with previous dating of marine sediments in Prydz Bay. However, the basal age of AM01b of 28250 ± 230 14C yr bp probably results from greater contamination by recycled organic matter. Lithology, 14C surface ages, absolute diatom abundance, and the diatom assemblage are used as indicators of sediment transport pathways beneath the ice shelf. The transport pathways suggested from these indicators do not correspond to previous models of the basal melt/freeze pattern. This indicates that the overturning baroclinic circulation beneath the Amery Ice Shelf (near-bed inflow-surface outflow) is a more important influence on basal melt/freeze and sediment distributions than the barotropic circulation that produces inflow in the east and outflow in the west of the ice front. Localized topographic (ice draft and bed elevation) variations are likely to play a dominant role in the resulting sub-ice shelf melt and sediment distribution.

Lineage

Maintenance and Update Frequency: unknown
Statement: Unknown

Issued: 2007

This dataset is part of a larger collection

Click to explore relationships graph

67,-68 67,-73 79,-73 79,-68 67,-68

73,-70.5

text: westlimit=79; southlimit=-73.0; eastlimit=67; northlimit=-68.0

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
Identifiers