Software

SandyBeachMapping_DL

Commonwealth Scientific and Industrial Research Organisation
Yong, SukYee ; O'Grady, Julian
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://hdl.handle.net/102.100.100/636534?index=1&rft.title=SandyBeachMapping_DL&rft.identifier=http://hdl.handle.net/102.100.100/636534?index=1&rft.publisher=Commonwealth Scientific and Industrial Research Organisation&rft.description=The code collection contains a Python package to train an image segmentation model using the U-Net deep learning architecture for mapping sandy beaches.\n\nThis collection supplements the publication: Regional-Scale Image Segmentation of Sandy Beaches: Comparison of Training and Prediction Across Two Extensive Coastlines in Southeastern Australia (Yong et al.)&rft.creator=Yong, SukYee &rft.creator=O'Grady, Julian &rft.date=2025&rft.edition=v2&rft.relation=https://doi.org/10.3390/rs16183534&rft_rights=BSD 3-Clause Licence https://research.csiro.au/dap/licences/bsd-3-clause-licence/&rft_rights=Data is accessible online and may be reused in accordance with licence conditions&rft_rights=All Rights (including copyright) CSIRO 2024.&rft_subject=deep learning&rft_subject=image segmentation&rft_subject=beaches&rft_subject=coastal management&rft_subject=Environmental assessment and monitoring&rft_subject=Environmental management&rft_subject=ENVIRONMENTAL SCIENCES&rft_subject=Deep learning&rft_subject=Machine learning&rft_subject=INFORMATION AND COMPUTING SCIENCES&rft.type=Computer Program&rft.language=English Access the software

Licence & Rights:

Other view details
Other

BSD 3-Clause Licence
https://research.csiro.au/dap/licences/bsd-3-clause-licence/

Data is accessible online and may be reused in accordance with licence conditions

All Rights (including copyright) CSIRO 2024.

Access:

Open view details

Accessible for free

Contact Information



Brief description

The code collection contains a Python package to train an image segmentation model using the U-Net deep learning architecture for mapping sandy beaches.

This collection supplements the publication: Regional-Scale Image Segmentation of Sandy Beaches: Comparison of Training and Prediction Across Two Extensive Coastlines in Southeastern Australia (Yong et al.)

Available: 2025-07-14

This dataset is part of a larger collection