Data

SAIMOS - Biological and Flow Cytometry data collected from CTD stations in South Australia, in February 2013

Integrated Marine Observing System
Integrated Marine Observing System (IMOS)
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://catalogue-imos.dev.aodn.org.au/geonetwork/srv/eng/search?uuid=7ea44914-d39b-42e4-8235-3e35297de356&rft.title=SAIMOS - Biological and Flow Cytometry data collected from CTD stations in South Australia, in February 2013&rft.identifier=http://catalogue-imos.dev.aodn.org.au/geonetwork/srv/eng/search?uuid=7ea44914-d39b-42e4-8235-3e35297de356&rft.description=Flow cytometry data was collected in February 2013, in waters off South Australia. The general purpose of the study is to be able to establish background knowledge on the ecosystem on the continental shelf of South Australia and the impact of upwelling/saline outflow events on microbial communities to ultimately develop a biogeochemical model of the region. Sampling was carried out during cruises conducted on board the RV Ngerin as part of the Southern Australian Integrated Marine System (SAIMOS). During each cruise, the physical, chemical and biological properties of the chlorophyll fluorescence maximum (DCM) layer were investigated. Flow cytometry data is normally collected for picophytoplankton, bacteria and viruses, but not on this cruise Six main stations have been sampled over the course of the study, five are located on the 100 m isobath, i.e. RS (35.508S, 136.278E), B2 (35.418S, 136.148E), B3 (35.258S, 136.048E), SAM2CP/B4 (35.168S, 135.418E) and SAM5CB/B5 (35.008S, 135.198E), and one from an offshore station (B1; 36.188S, 136.178E) located southwest of Kangaroo Island. Note that combining the distances between stations (14–25 nautical miles), the average component of the current velocity at middepth along the shelf (0.01 m s21) and the average speed of the vessel (i.e. 9 knots) indicate that different water masses were sampled at each station. Additional samples have on occasion been collected from the National Reference Station (NRS) at Kangaroo Island (35.832S, 136.447E) and the SA Spencer Gulf Mouth Mooring (SAM8SG, 35.25S, 136.690E), where the saline outflow occurs.At each station, in vivo fluorescence profiles were used to identify the depth of the FM from where we collected seawater with Niskin bottles. These were subsequently homogenized prior to subsampling for nutrients and Chl a concentration. If no FM could be identify, seawater sampling was done in the surface mixed layer at a depth of 15 m that we previously identified to avoid the effects of photoinhibition. Seawater samples of 50 mL were filtered through bonnet syringe filters (0.45 um porosity, Micro Analytix Pty Ltd) and stored at –20oC for nutrient analysis. Nutrient concentrations are not always available for all stations on all cruises. All other samples were analysed according to the Lachat Quickchem methods for phosphate (PO3-,4, detection limit; 0.03 uM), nitrate + nitrite (NO-,x, detection limit; 0.07 uM) and ammonium (NH+,4, detection limit; 0.07 uM) on a QuickChem QC8500 Automated Ion Analyser. Chl a concentrations were determined using triplicate 300 mL seawater samples filtered through fibre glass filters (Whatman GF/C, 1.7 um porosity). Filters were stored at –20oC until analysis. Chl a was extracted by placing each filter in 5 mL of methanol for 24 h in the dark at 4oC (Welschmeyer, 1994). Chl a concentrations in the extracts were determined using a Turner 450 fluorometer previously calibrated with Chl a extracted from Anacystis nidulans (Sigma Chemicals, St Louis, MO, USA).&rft.creator=Integrated Marine Observing System (IMOS) &rft.date=2015&rft.coverage=northlimit=-34.90; southlimit=-35.90; westlimit=135.0; eastLimit=136.90&rft.coverage=northlimit=-34.90; southlimit=-35.90; westlimit=135.0; eastLimit=136.90&rft_rights=Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0&rft_subject=oceans&rft_subject=SURFACE WINDS&rft_subject=EARTH SCIENCE&rft_subject=OCEANS&rft_subject=OCEAN WINDS&rft_subject=WATER DEPTH&rft_subject=BATHYMETRY/SEAFLOOR TOPOGRAPHY&rft_subject=SEA SURFACE TEMPERATURE&rft_subject=OCEAN TEMPERATURE&rft_subject=CHLOROPHYLL&rft_subject=OCEAN CHEMISTRY&rft_subject=SUSPENDED SOLIDS&rft_subject=INORGANIC MATTER&rft_subject=ORGANIC MATTER&rft_subject=NITROGEN&rft_subject=PHOSPHATE&rft_subject=SILICATE&rft_subject=PHYTOPLANKTON&rft_subject=BIOLOGICAL CLASSIFICATION&rft_subject=PROTISTS&rft_subject=PLANKTON&rft_subject=Biosphere | Microbiota | Bacteria&rft_subject=Niskin Bottles&rft_subject=IMOS Node | SA-IMOS | Southern Australian Integrated Marine Observing System&rft_subject=Virus&rft_subject=Picophytoplankton&rft_subject=latitude&rft_subject=longitude&rft_subject=wind_speed&rft_subject=wind_from_direction&rft_subject=depth&rft_subject=sea_surface_temperature&rft_subject=depth_of_chlorophyll_maximum&rft_subject=concentration_of_chlorophyll_in_sea_water&rft_subject=mass_concentration_of_suspended_matter_in_sea_water&rft_subject=mass_concentration_of_particulate_inorganic_matter_in_sea_water&rft_subject=mass_concentration_of_particulate_organic_matter_in_sea_water&rft_subject=mole_concentration_of_nitrogen_in_ammonium_in_sea_water&rft_subject=mole_concentration_of_nitrogen_in_nitrate_and_nitrite_in_sea_water&rft_subject=mole_concentration_of_phosphorus_in_phosphate_in_sea_water&rft_subject=mole_concentration_of_silicate_in_sea_water&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0

Access:

Open

Brief description

Flow cytometry data was collected in February 2013, in waters off South Australia.

The general purpose of the study is to be able to establish background knowledge on the ecosystem on the continental shelf of South Australia and the impact of upwelling/saline outflow events on microbial communities to ultimately develop a biogeochemical model of the region. Sampling was carried out during cruises conducted on board the RV Ngerin as part of the Southern Australian Integrated Marine System (SAIMOS). During each cruise, the physical, chemical and biological properties of the chlorophyll fluorescence maximum (DCM) layer were investigated. Flow cytometry data is normally collected for picophytoplankton, bacteria and viruses, but not on this cruise

Six main stations have been sampled over the course of the study, five are located on the 100 m isobath, i.e. RS (35.508S, 136.278E), B2 (35.418S, 136.148E), B3 (35.258S, 136.048E), SAM2CP/B4 (35.168S, 135.418E) and SAM5CB/B5 (35.008S, 135.198E), and one from an offshore station (B1; 36.188S, 136.178E) located southwest of Kangaroo Island. Note that combining the distances between stations (14–25 nautical miles), the average component of the current velocity at middepth along the shelf (0.01 m s21) and the average speed of the vessel (i.e. 9 knots) indicate that different water masses were sampled at each station. Additional samples have on occasion been collected from the National Reference Station (NRS) at Kangaroo Island (35.832S, 136.447E) and the SA Spencer Gulf Mouth Mooring (SAM8SG, 35.25S, 136.690E), where the saline outflow occurs.

Lineage

At each station, in vivo fluorescence profiles were used to identify the depth of the FM from where we collected seawater with Niskin bottles. These were subsequently homogenized prior to subsampling for nutrients and Chl a concentration. If no FM could be identify, seawater sampling was done in the surface mixed layer at a depth of 15 m that we previously identified to avoid the effects of photoinhibition.

Seawater samples of 50 mL were filtered through bonnet syringe filters (0.45 um porosity, Micro Analytix Pty Ltd) and stored at –20oC for nutrient analysis. Nutrient concentrations are not always available for all stations on all cruises. All other samples were analysed according to the Lachat
Quickchem methods for phosphate (PO3-,4, detection limit; 0.03 uM), nitrate + nitrite (NO-,x, detection limit; 0.07 uM) and ammonium (NH+,4, detection limit; 0.07 uM) on a QuickChem QC8500 Automated Ion Analyser. Chl a concentrations were determined using triplicate 300 mL seawater samples filtered through fibre glass filters (Whatman GF/C, 1.7 um porosity). Filters were stored at –20oC until analysis. Chl a was extracted by placing each filter in 5 mL of methanol for 24 h in the dark at 4oC (Welschmeyer, 1994). Chl a concentrations in the extracts were determined using a Turner 450 fluorometer previously calibrated with Chl a extracted from Anacystis nidulans (Sigma Chemicals, St Louis, MO, USA).

Notes

Credit
Australia’s Integrated Marine Observing System (IMOS) is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent.
Credit
South Australian Research and Development Institute (SARDI)

Created: 21 10 2015

Data time period: 20 02 2013 to 20 02 2013

Click to explore relationships graph

136.9,-34.9 136.9,-35.9 135,-35.9 135,-34.9 136.9,-34.9

135.95,-35.4

text: northlimit=-34.90; southlimit=-35.90; westlimit=135.0; eastLimit=136.90

Other Information
(Summary of biological and nutrient data collected from each station.)

uri : http://data.aodn.org.au/IMOS/SAIMOS/Biogeochem/2013/02/saimosBioData201302.xls

Explanation of column headings in excel summary document. (README_BioExcel_edit241115.doc)

uri : https://catalogue-imos.aodn.org.au:443/geonetwork/srv/api/records/7ea44914-d39b-42e4-8235-3e35297de356/attachments/README_BioExcel_edit241115.doc

(Chlorophyll a processed data)

uri : http://data.aodn.org.au/IMOS/SAIMOS/Biogeochem/2013/02/2013_02_SAIMOS_ANMN_BGC_Chla_FV00.xlsx

(Link to free Winmdi software for visualisation and analysis of fcs files)

uri : http://en.bio-soft.net/other/WinMDI.html

Identifiers
  • global : 7ea44914-d39b-42e4-8235-3e35297de356