Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/192108]Researchers: Prof Harold Stokes (Principal investigator) , A/Pr Sally Partridge , Prof Ruth Hall
Brief description Bacteria have a remarkable ability to capture and spread antibiotic resistance genes. This phenomenon is a particular problem in our hospitals and in the community as multi-drug resistant pathogenic organisms have been selected over time as a result of the use of antibitoics. Moreover the incidence of resistance appears to be on the increase. Once resistant strains appear they can greatly complicate the treatment of infections and the eradication of such pathogens from a hospital is both difficult and costly. We have been working on the problem of how antibiotic resistance genes are spread for a number of years and have identified a novel genetic element that can capture resistance genes by a process of site-specific recombination. This element, the integron, is common in mutli-drug resistant clinical isolates. To be captured by an integron, an antibiotic resistance gene has to be part of a mobile element known as a gene cassette. Although the application of antibiotics acts to amplify pathogens that are resistant and favours their persistance in hospitals, it is generally recognized that neither the gene cassette nor the drug resistance gene evolve in the hospital. Rather, these genes make their way into human pathogens from bacteria that normally reside in other environments, for example soil or water. In this project, we will investigate one route by which drug resistance genes and integrons might find their way into clinically relevant strains and what the sources of the resistance genes and gene cassettes might be. A greater understanding of these processes will help in developing strategies to limit the spread of drug resistant bacteria into and around hospitals.
Funding Amount $AUD 421,650.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 192108
- PURL : https://purl.org/au-research/grants/nhmrc/192108