Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/349456]Researchers: Giuseppe Posterino (Principal investigator)
Brief description Excitation-contraction (E-C) coupling is a term used to broadly describe the sequence of cellular events that starts with an electrical signal at the surface membrane of a muscle cell and which then ultimately leads to muscle contraction. Although the overall sequence is known, there remain many gaps in our understanding of the mechanisms involved not only related to normal muscle function but to how this function may be impaired by excessive exercise and disease. Many cellular metabolites contribute towards the normal control of muscle contraction, while others contribute to its impairment. Reactive oxygen species (ROS), which includes nitric oxide (NO) and related molecules, are metabolic factors often referred to as cellular oxidants. They are thought to have an essential role in controlling normal muscle function. Paradoxically, they are also implicated in the impairment of muscle function associated with fatigue, disease and aging. How these molecules both control normal muscle activity and also contribute to impairment of such function remains unclear. Thus, the central aim of this project is to identify the mechanisms by which the cellular oxidants, NO and other ROS, both control normal E-C coupling in skeletal muscle fibres and how they contribute to muscle fatigue. Clearly, understanding how skeletal muscle normally contracts is essential in order to better understand how muscle function can become impaired with exercise, disease and age. The work from this study will provide insight into both normal muscle physiology and how muscles fatigue and ultimately provide new methodologies and drugs that may combat fatigue, disease and age related changes to muscle function.
Funding Amount $AUD 163,250.00
Funding Scheme NHMRC Project Grants
Notes New Investigator Grant
- nhmrc : 349456
- PURL : https://purl.org/au-research/grants/nhmrc/349456