Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/402559]Researchers: Prof Stephen Twigg (Principal investigator) , A/Pr Susan Mclennan , A/Pr Terri Allen
Brief description Diabetic cardiomyopathy is a condition where the heart muscle is directly damaged by diabetes. It is being recognised as a prominent cause of both acute and chronic heart failure in diabetes. It is common and occurs in up to 60% of diabetic patients . At present however, no treatments are available to directly treat the cardiomyopathy. This condition can also occur in people with diabetes who have high blood pressure and-or coronary artery disease and may combine with these problems to worsen patient outcomes. We have generated data in experimental diabetes in rodents that strongly implicates a heart growth factor in causing diabetic cardiomyopathy. This protein, called connective tissue growth factor (CTGF), is increased in diabetic cardiomyopathy, and is elevated by high glucose and other factors in diabetes. We have published data showing that CTGF causes tissue scarring like that which occurs in cardiomyopathy, by affecting signals in cells called fibroblasts. It increases the laying down of extracellular matrix (ECM) and also inhibits the degradation of ECM by the proteins that break down matrix, known as the MMPand PAI systems. Such accumulation of ECM is thought to be a major factor leading to abnormal muscle function in cardiomyopathy. We now plan to block CTGF in this diabetic heart model to determine if we can prevent diabetic cardiomyopathy. We have generated two methods to inhibit CTGF in the animal model. Echocardiography (a heart ultrasound test), and molecular analysis of the heart tissue will determine if we can prevent the otherwise adverse functional and structural changes of diabetes in the heart. We will also study our baboon model of diabetes to determine if diabetic cardiomyopathy with increased heart CTGF is present in the primates. Cell culture studies from rat heart fibroblasts and myocytes will determine how CTGF has the effect on cells to cause cardiomyopathy and how we might further prevent this condition developing in diabetes.
Funding Amount $AUD 382,820.54
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 402559
- PURL : https://purl.org/au-research/grants/nhmrc/402559