grant

The role of the Gtf2i gene family in behaviour and Williams Syndrome [ 2007 - 2010 ]

Also known as: Genes, behaviour and Williams Syndrome

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/423401]

Researchers: Prof Edna Hardeman (Principal investigator) ,  Dr Enoch Tay Prof Anthony Hannan

Brief description Williams Syndrome (WS) is a complex neurodevelopmental disorder in humans caused by a deletion of 21 genes on chromosome 7. This results in a reduced IQ and marked visuospatial deficiencies. However, unlike other forms of mental retardation, some important cognitive abilities are completely normal. WS patients show normal development of linguistic abilities and anecdotal evidence suggests they possess an above average musical ability. In addition, these individuals also possess a characteristic overfriendly, gregarious personality with little inhibition towards strangers. Such a characteristic cognitive and behavioral profile in a genetic disorder has provided convincing evidence that genes play a role in specifying cognitive abilities and behavior. This interesting syndrome gives us an insight into the perplexing debate of Nature vs Nurture. It also provides a unique and invaluable opportunity to dissect the role of certain genes in complex neurodevelopmental pathways that result in cognition and behavior. Recently, patients with smaller (atypical) deletions of genes in the WS region have been described. These patients do not display the full 'classical' range of WS characteristics. The identification of which genes are deleted in these patients suggests that two genes in particular, GTF2IRD1 and GTF2I, are involved in visuospatial abilities, sociability and specific anxieties and phobias. Our laboratory was the first to identify proteins encoded by GTF2IRD1, known as MusTRDs, that act for the most part to suppress gene expression. Furthermore, our laboratory has been studying a mouse model in which the Gtf2ird1 gene has been deleted, similar to the situation in WS, and have found that the mice are more 'social' and exploratory. In this project, we want to determine if other behavioural features of WS are contributed to by this gene and-or its related gene, Gtf2i, and to characterize the role that these genes play in neuronal cell function.

Funding Amount $AUD 629,396.74

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]