Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/436936]Researchers: A/Pr Paul Ekert (Principal investigator) , A/Pr Christine Hawkins , Dr Bernard Callus
Brief description It is the ultimate fate of most of our cells to die by committing suicide, because they are no longer required, are no longer functioning, or are potentially harmful. This normal physiological process is termed apoptosis . When cell death fails to occur, abnormal cells can accumulate and lead to cancer. Signalling from growth-factors is required for many cell types to survive. When these signals are lost, the cells activate their cell death pathways. It is a hallmark of cancer cells that they harbour mutations in cell death genes and their dependence on growth factors for survival is diminished or lost. The genes of the apoptosis pathway function either to promote or inhibit cell death. Some genes in the apoptosis pathway allow apoptosis to proceed rapidly, but do not decide the fate of the cell. Other genes are required for a cell to commit to die, and if they are mutated then a functional cell, that is capable of proliferating, survives. This is a crucial distinction because it is only the genes that decide cell fate that can act as cancer genes, and are valid targets for therapy. We have identified one particular gene, Puma, as an important regulator of cell survival. Without this gene, cells survive longer without growth-factor and, importantly, can proliferate when growth factor is restored. Understanding how this gene functions and is regulated will contribute to our understanding of the gene mutations that lead to cancer and may identify valid targets for cancer therapy. In our model we use growth factor dependent cell lines derived from mice lacking particular genes in the cell death pathway, including Puma. These cells proliferate in the presence of growth factor, and allow us to determine the role of the genes when growth factor is withdrawn. Using this system, we will determine how Puma is able to induce cell death, what other genes are required to regulate this process and how loss of Puma function may contribute to cancer development.
Funding Amount $AUD 527,683.42
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 436936
- PURL : https://purl.org/au-research/grants/nhmrc/436936