Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/406620]Researchers: Dr Adam Hart (Principal investigator)
Brief description Regulation of self-renewal and developmental potential in embryonic and germline stem cells. The capacity of some stem cells to self-renew and under specific conditions, give rise to all adult cell types, a property known as pluripotency , is the key to unlocking the potential of cell based therapies. The development of stem cell based therapies promises to revolutionize the treatment of many common human diseases. For instance, in neurodegenerative conditions such as Parkinsons disease, normal embryonic stem cells grown in culture could be used to replace the lost or disabled neurons in the patient. Many other conditions including diabetes, cystic fibrosis, myocardial infarction (heart attack) and stroke could potentially be treated with stem cell based therapies. Understanding the molecular regulators that govern establishment and maintenance in culture of stem cell lines derived from embryos and from germ cells is the primary goal of this study. We will use well-established techniques to genetically manipulate mouse embryonic stem cells and embryos to examine the role of a specific gene, NANOG. Named after the Celtic legend of Tir NaNog (land of the ever young). When NANOG was forced to remain active, embryonic stem cells were able to grow in media deficient in factors usually required for self-renewal and did not lose their pluripotency even when treated with chemical agents that usually induce differentiation. Understanding the full capacity of NANOG to influence stem cell self-renewal and elucidation of the underlying molecular pathways regulated by this gene will provide valuable insights into the establishment and manipulation of stem cell lines from embryonic and adult tissues.
Funding Amount $AUD 491,767.61
Funding Scheme NHMRC Project Grants
Notes New Investigator Grant
- nhmrc : 406620
- PURL : https://purl.org/au-research/grants/nhmrc/406620