grant

Regulation of gene expression: biomolecular interactions in cellular development and disease [ 2006 - 2010 ]

Also known as: Understanding and regulating gene output

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/402762]

Researchers: Prof Merlin Crossley (Principal investigator) ,  Prof Jacqueline Matthews Prof Joel Mackay

Brief description This team consists of three of Australia�s younger researchers Merlin Crossley, Joel Mackay and Jacqui Matthews (as Chief Investigators), who are recognized as authorities in the areas of gene regulation and the structural and functional analysis of proteins. They are joined by Mitchell Weiss, a world authority on blood development and clinical disorders,and Alexis Verger, a molecular and cell biologist recruited from France, both as Principal Investigators. Crossley, Mackay and Matthews have worked as a team for around six years to date, have published together in high-quality international journals, and have received anumber of accolades for their contributions to Australian science. For example, Crossley has won a number of national awards, including the Gottschalk Medal of the Australian Academy of Science; Mackay was recently awarded the Prime Minister�s Prize for Life Scientist of the Year, and Matthews won the only Charles and Sylvia Viertel Medical Research Fellowship to be awarded in 2003. The members of this team have collaborated extensively on the world stage and Crossley, Mackay and Matthews have also taken leadership roles in the Australian scientific community. Mitchell Weiss has been an important collaborator, exchanging reagents and advice, since he and Crossley trained together as postdocs in Stu Orkin�s lab at Harvard in the early 90s. Most recently Weiss, in collaboration with Mackay, has made important discoveries on a-globin production, which has led to several highly significant publications including a seminal paper in Cell in 2004.The program of research put forward in this proposal centres around understanding the mechanisms through which genes are switched on and off, using blood development as a model system, that is also fundamental to human life. The regulation of gene output is essential both during the development of an organism and throughout the course of its life. Problems with this regulation can result in many different disease states, most notably cancer, which includes the many different types of leukemias. At one level, gene output is controlled by networks of specific proteins known as transcription factors that interact both with each other and with DNA. Currently, however, the details surrounding which complexes regulate which genes and the processes that control the making and breaking up of the complexes are not well understood. Knowledge of how these interactions take place will put us in a position to control the output of chosen genes for therapeutic purposes. We propose to use a combination of cell biological, biochemical, and structural approaches to firstly shed light on these complexes and secondly develop reagents that can be used to manipulate the activity of specific genes.

Funding Amount $AUD 2,998,713.33

Funding Scheme Programs

Notes Program Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]