grant

A Ral Signalling Complex in Vesicle Traffic [ 2004 - 2006 ]

Also known as: Intracellular signalling via the small GTPase Ral regulates vesicle traffic

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/272505]

Researchers: Prof Phillip Robinson (Principal investigator) ,  Prof Basil Roufogalis

Brief description Inside our cells is a complex traffic system. The vehicles are vesicles that come in different shapes and sizes and travel to specific destinations in the cell to deliver cargo such as: surface growth factor receptors that are to have their signalling terminated, proteins and lipids destined for the cell wall for growth or development (like neurite outgrowth) and proteins and hormones destined for secretion (like neurotransmitter release). More than 100 human genetic disorders map to defects in one of the components of this system. Proteins called small GTPases provide order for this traffic and allow specific cargo to reach specific destinations. They regulate cell functions by acting as switches, turning biochemical processes on and off inside the cell. Ral is a small GTPase enzyme found in brain and broadly distributed in other cells. We have discovered that Ral is part of a large signalling complex. When activated Ral stimulates effectors, either the exocyst or RalBP1. In turn, mild oxidative stress controls a Ral inhibitor protein called ERp57. The research proposed aims to establish the functional role for the Ral signalling complex in cells. We will determine with which vesicle trafficking events Ral is associated, which effector it utilises in that pathway, and how that effector directs the traffic. We will also map the steps that may lead to inactivation of Ral via ERp57 in cells, and propose that this is mediated by mild oxidative stress. Techniques of molecular biology, biochemistry, molecular biology, proteomics and microscopy will be used to establish these functions. The research will lead to increased knowledge of the significance of this protein to cellular and particularly neuronal cell function. This forms the basis for understanding normal cell function and for identification of further factors causing diseases of vesicle transport. In time, such research aids in the development of specific therapies for sufferers of such diseases.

Funding Amount $AUD 481,500.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]