grant

Polycomb Group genes in murine lymphomagenesisand their impact on drug response. [ 2007 - 2009 ]

Also known as: Polycomb group genes, lymphoma and drug response.

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/461261]

Researchers: A/Pr Clare Scott (Principal investigator)

Brief description The success of lymphoma treatment with current drugs is limited by drug resistance. Some crucial links between genes which cause cancer and genes which alter response to cancer treatment have been identified: the cellular machinery that cancer cells use to become cancer cells in the first place, is often the same machinery that cancer cells later use to become resistant to cancer treatments. The Polycomb Group family controls expression of other critical genes: that is, they dictate which genes are switched on, where, and when. This determines whether a cell behaves normally or whether it may turn into a cancer cell. When Polycomb Group genes themselves are expressed at the wrong time or place, they can cause cancer. In human lymphoma, these genes have been associated with more aggressive lymphoma. This has also been shown for other cancers such as breast and prostate cancer. In some cases these genes are associated with cancers that do worse following anti-cancer treatment. So far, no research has been published looking the direct impact of the Polycomb Group genes on the success of treatment in a controlled laboratory model. We have used a powerful laboratory mouse model of lymphoma, established in the host laboratory, in which over-expression of the c-myc oncogene in developing B cells causes lymphoma. This model is easy to manipulate and this provides us with a great deal of experimental control, much more than can be achieved from working with patient samples. Two family members, Bmi-1 and Cbx7, cause lymphoma to develop aggressively and we will ask whether two other members, Ezh2 and Rybp do this as well. We will determine whether these 4 genes cause drug resistance in lymphoma, with currently used chemotherapy and also with novel anti-cancer drugs. By increasing our understanding of drug resistance in lymphoma, drugs may be utilised more effectively and new markers identified to predict which drug will be successful in treating a particular lymphoma.

Funding Amount $AUD 476,815.08

Funding Scheme NHMRC Project Grants

Notes New Investigator Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]