grant

Pharmacological modulation of microglial responses after transient forebrain ischaemia in rats [ 2001 - 2002 ]

Also known as: Identification of ways that drugs can minimise death of nerves after a stroke in rats

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/143624]

Researchers: Prof Bevyn Jarrott (Principal investigator)

Brief description A stroke is caused by an acute blockade of blood flow to a brain region and is normally caused by a clot in the artery that supplies blood to that region. Within minutes, the region of the brain that is receiving no blood flow, dies and so the functions controlled by that region cease. If this region controls key functions such as breathing then the patient dies and this occurs in about one third of patients. However, in the majority of patients, the blockage affects parts of the brain controlling movement of limbs or speech and so these patients suffer permanent disabilities. Not surprisingly, stroke is the most common life-threatening neurological disease and the major cause of disability in adults over 45. Apart from the profound effect stroke has on the patient and the family, the annual cost of disability to the Australian community is approx $ 1 billion. If the disability could be minimised by reducing institutionalization then the cost saving would be great. Research is being carried out to define how nerves die when they have insufficient blood supply and progress has been made in understanding the biochemical basis of this process. Such knowledge opens the way for the design of novel drugs to delay nerve death. Our laboratory has been successful in designing a novel drug, AM-36 that minimises nerve death in the forebrain of rats that have had the blood supply to the forebrain interrupted for 3 to 5 hours. A recent report has shown that a stroke in the forebrain can lead to nerve damage in the spinal cord and this could contribute to impaired walking in stroke patients. This is an unexpected finding and this project seeks to define how and when nerves in the spine die after a stroke in the forebrain. Such information should then lead to the rational design of drugs to minimise the death of nerves in the spinal cord as well as in the forebrain.

Funding Amount $AUD 170,906.27

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]