Data

Palaeolimnological investigations of coastal continental lakes in the Larsemann Hills

Australian Ocean Data Network
Hodgson, D. and Wilmotte, A. ; HODGSON, DOMINIC ; WILMOTTE, ANNICK
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://catalogue-aodn.prod.aodn.org.au/geonetwork/srv/eng/search?uuid=ASAC_2112&rft.title=Palaeolimnological investigations of coastal continental lakes in the Larsemann Hills&rft.identifier=http://catalogue-aodn.prod.aodn.org.au/geonetwork/srv/eng/search?uuid=ASAC_2112&rft.publisher=Australian Antarctic Data Centre&rft.description=1.The lakes and ponds in the Larsemann Hills and Bolingen Islands (East-Antarctica) are characterised by cyanobacteria-dominated, benthic microbial mat communities. A 56-lake dataset representing the limnological diversity among the more than 150 lakes and ponds in the region was developed to identify the nature and quantify the effects of the abiotic conditions structuring the cyanobacterial and diatom communities. 2.Limnological diversity in the lakes of the Larsemann Hills and Bolingen Islands is primarily determined by salinity and salinity related variables (concentrations of major ions, conductivity and alkalinity), and variation in lake morphometry (depth, catchment and lake area). Low pigment, phosphate and nitrogen concentrations, and DOC and TOC levels in the water column of most lakes underscore the ecological success of benthic microbial mats in this region. 3.Benthic communities consisted of prostrate, sometimes finely laminated mats, flake mats, epilithic and interstitial microbial mats. Mat physiognomy and chlorophyll/carotenoid ratios were strongly related to lake depth, but not to salinity. 4.Morphological-taxonomic analyses revealed the presence of 27 diatom morphospecies and 34 cyanobacterial morphotypes. Mats of shallow lakes (interstitial and flake mats) and those of deeper lakes (prostrate mats) were characterized by different dominant cyanobacterial morphotypes. No relationship was found between the distribution of these morphotypes and salinity. In contrast, variation in diatom species composition was strongly related to both lake depth and salinity. Shallow ponds are mainly characterised by aerial diatoms (e.g. Diadesmis cf. perpusilla and Hantzschia spp.). In deep lakes, communities are dominated by Psammothidium abundans and Stauroforma inermis. Lakes with conductivities higher than 1.5 mS/cm become susceptible to freezing out of salts and hence pronounced salinity fluctuations. In these lakes Psammothidium abundans and Stauroforma inermis are replaced by Amphora veneta. Stomatocysts were only important in shallow freshwater lakes. 5.Ice cover influences microbial mat structure and composition both directly by physical disturbance in shallow lakes and by influencing light availability in deeper lakes, as well as indirectly by generating salinity increases and promoting the development of seasonal anoxia. 6.The relationship between diatom species composition and salinity and depth is statistically significant. Transfer functions based on these data can therefore be used in paleolimnological reconstruction to infer changes in the precipitation-evaporation balance in continental Antarctic lakes. These data were also collected under the auspices of the Micromat Project, Biodiversity of Microbial mats in Antarctica (see the URL below). The fields in this dataset are: Lake Lake number Location Latitude Longitude Altitude (m) Area (ha) Catchment (ha) Depth (m) Distance from Plateau Distance from Sea Geology Substrate Presence Absence pH Alkalinity Nitrate Nitrite Ammonium Silicate Phosphate Oxygen Salinity Turbidity Conductivity Sodium Potassium Calcium Magnesium Chlorine Sulphur Bicarbonate Hydrocarbonate Total Organic Carbon Dissolved Organic CarbonProgress Code: completedStatement: The dates provided in temporal coverage are approximate only, and represent the dates of field data collection rather than laboratory analysis.&rft.creator=Hodgson, D. and Wilmotte, A. &rft.creator=HODGSON, DOMINIC &rft.creator=WILMOTTE, ANNICK &rft.date=2000&rft.coverage=westlimit=75.75; southlimit=-69.5166; eastlimit=76.4; northlimit=-69.15&rft.coverage=westlimit=75.75; southlimit=-69.5166; eastlimit=76.4; northlimit=-69.15&rft.coverage=uplimit=100; downlimit=5&rft.coverage=uplimit=100; downlimit=5&rft.coverage=uplimit=34; downlimit=0.5&rft.coverage=uplimit=34; downlimit=0.5&rft_rights=This metadata record is publicly available.&rft_rights=These data are publicly available for download from the provided URL. A copy of the referenced publication is available for download to AAD staff only.&rft_rights= https://creativecommons.org/licenses/by/4.0/legalcode&rft_rights=This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=ASAC_2112 when using these data. http://creativecommons.org/licenses/by/4.0/).&rft_rights=Portable Network Graphic&rft_rights=https://i.creativecommons.org/l/by/3.0/88x31.png&rft_rights=Creative Commons by Attribution logo&rft_rights=Attribution 4.0 International (CC BY 4.0)&rft_rights=Legal code for Creative Commons by Attribution 4.0 International license&rft_rights=Attribution 4.0 International (CC BY 4.0)&rft_rights= https://creativecommons.org/licenses/by/4.0/legalcode&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Other view details
Unknown

https://creativecommons.org/licenses/by/4.0/legalcode

This data set conforms to the CCBY Attribution License
(http://creativecommons.org/licenses/by/4.0/).

Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=ASAC_2112 when using these data.
http://creativecommons.org/licenses/by/4.0/).

Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0/legalcode

This metadata record is publicly available.

These data are publicly available for download from the provided URL.

A copy of the referenced publication is available for download to AAD staff only.

Portable Network Graphic

https://i.creativecommons.org/l/by/3.0/88x31.png

Creative Commons by Attribution logo

Attribution 4.0 International (CC BY 4.0)

Legal code for Creative Commons by Attribution 4.0 International license

Access:

Other

Contact Information

metadata@aad.gov.au

Brief description

1.The lakes and ponds in the Larsemann Hills and Bolingen Islands (East-Antarctica) are characterised by cyanobacteria-dominated, benthic microbial mat communities. A 56-lake dataset representing the limnological diversity among the more than 150 lakes and ponds in the region was developed to identify the nature and quantify the effects of the abiotic conditions structuring the cyanobacterial and diatom communities.

2.Limnological diversity in the lakes of the Larsemann Hills and Bolingen Islands is primarily determined by salinity and salinity related variables (concentrations of major ions, conductivity and alkalinity), and variation in lake morphometry (depth, catchment and lake area). Low pigment, phosphate and nitrogen concentrations, and DOC and TOC levels in the water column of most lakes underscore the ecological success of benthic microbial mats in this region.

3.Benthic communities consisted of prostrate, sometimes finely laminated mats, flake mats, epilithic and interstitial microbial mats. Mat physiognomy and chlorophyll/carotenoid ratios were strongly related to lake depth, but not to salinity.

4.Morphological-taxonomic analyses revealed the presence of 27 diatom morphospecies and 34 cyanobacterial morphotypes. Mats of shallow lakes (interstitial and flake mats) and those of deeper lakes (prostrate mats) were characterized by different dominant cyanobacterial morphotypes. No relationship was found between the distribution of these morphotypes and salinity. In contrast, variation in diatom species composition was strongly related to both lake depth and salinity. Shallow ponds are mainly characterised by aerial diatoms (e.g. Diadesmis cf. perpusilla and Hantzschia spp.). In deep lakes, communities are dominated by Psammothidium abundans and Stauroforma inermis. Lakes with conductivities higher than 1.5 mS/cm become susceptible to freezing out of salts and hence pronounced salinity fluctuations. In these lakes Psammothidium abundans and Stauroforma inermis are replaced by Amphora veneta. Stomatocysts were only important in shallow freshwater lakes.

5.Ice cover influences microbial mat structure and composition both directly by physical disturbance in shallow lakes and by influencing light availability in deeper lakes, as well as indirectly by generating salinity increases and promoting the development of seasonal anoxia.

6.The relationship between diatom species composition and salinity and depth is statistically significant. Transfer functions based on these data can therefore be used in paleolimnological reconstruction to infer changes in the precipitation-evaporation balance in continental Antarctic lakes.

These data were also collected under the auspices of the Micromat Project, Biodiversity of Microbial mats in Antarctica (see the URL below).

The fields in this dataset are:

Lake
Lake number
Location
Latitude
Longitude
Altitude (m)
Area (ha)
Catchment (ha)
Depth (m)
Distance from Plateau
Distance from Sea
Geology
Substrate
Presence
Absence
pH
Alkalinity
Nitrate
Nitrite
Ammonium
Silicate
Phosphate
Oxygen
Salinity
Turbidity
Conductivity
Sodium
Potassium
Calcium
Magnesium
Chlorine
Sulphur
Bicarbonate
Hydrocarbonate
Total Organic Carbon
Dissolved Organic Carbon

Lineage

Progress Code: completed
Statement: The dates provided in temporal coverage are approximate only, and represent the dates of field data collection rather than laboratory analysis.

Data time period: 1997-10-29 to 1998-02-04

76.4,-69.15 76.4,-69.5166 75.75,-69.5166 75.75,-69.15 76.4,-69.15

76.075,-69.3333

text: westlimit=75.75; southlimit=-69.5166; eastlimit=76.4; northlimit=-69.15

text: uplimit=100; downlimit=5

text: uplimit=34; downlimit=0.5

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
Micromat Project (PROJECT HOME PAGE)

uri : http://www.nerc-bas.ac.uk/public/mlsd/micromat/