grant

Origin of cells in the 'artificial' artery grown in the peritoneal cavity [ 2005 - 2007 ]

Also known as: Can macrophages trans-differentiate into smooth muscle?

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/351476]

Researchers: Prof Julie Campbell (Principal investigator) ,  Dr Barbara Rolfe Gordon Campbell

Brief description Implantation of a foreign object (such as a sterile, flexible plastic tube) into the abdominal cavity of animals induces cells floating in the peritoneal fluid to form a capsule around the object. Over the next 2-3 weeks, the cells differentiate into fibroblasts then myofibroblasts. When this capsule of living tissue (in the appropriate moulded shape) is subsequently grafted into smooth muscle-rich organs such as artery, bladder, uterus or vas deferens to replace excised segments, it gains the structure of the surrounding tissue and the myofibroblasts differentiate further into functional smooth muscle. This raises the question: what is the origin of the cells of the capsule? Our previous studies suggested that monocyte-macrophages stimulated to enter the abdominal cavity in response to the sterile foreign body might be the source of the cells. In the current study we will use transgenic (c-fms EGFP and c-fms Cre Z-AP) mice in which cells of monocyte-macrophage lineage are genetically labelled. These cells can be clearly distinguished from all other cells of the body, and analysis of capsules formed around foreign bodies will give us a definitive answer. We will using micro-array analysis, determine which growth factors-cytokines are important in regulating differentiation of the cells, and the role of physical factors (eg pulsatile stretching). Finally, we will determine whether these cells stimulated to enter the abdominal cavity are capable of differentiating along alternative pathways, such as cardiac muscle or liver cells. Knowledge gained will further the use of the abdominal cavity as a bioreactor in which to engineer tissues for organ replacement therapies. Identification of the mechanisms regulating the (trans)differentiation and biology of the cells may also assist in wound repair strategies to prevent pathologies caused by excessive myofibroblast accumulation and fibrosis.

Funding Amount $AUD 489,000.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]