Brief description
Knowledge of the spatial distribution of populations is fundamental to management plans for any species. When tracking data are used to describe distributions, it is sometimes assumed that the reported locations of individuals delineate the spatial extent of areas used by the target population. Here we examine existing approaches to validate this assumption, highlight caveats, and propose a new method for a more informative assessment of the number of tracked animals (i.e. sample size) necessary to identify distribution patterns. We show how this assessment can be achieved by considering the heterogeneous use of habitats by a target species using the probabilistic property of a utilisation distribution. Our methods are compiled in the r package SDLfilter. We illustrate and compare the protocols underlying existing and new methods using conceptual models and demonstrate an application of our approach using a large satellite tracking dataset of flatback turtles Natator depressus tagged with accurate Fastloc-GPS tags (n = 69). Our approach has applicability for the post hoc validation of sample sizes required for the robust estimation of distribution patterns across a wide range of taxa, populations and life-history stages of animals.Lineage
Maintenance and Update Frequency: asNeededNotes
CreditAustralia Pacific LNG
Gladstone Port Corporation, QLD
Shell's QGC Business
Santos GLNG
Coupled Animal and Artificial Sensing for Sustainable Ecosystems (CAASE), James Cook University
Queensland Department of Environment and Science
Modified: 10 08 2024
text: westlimit=141.87744140625003; southlimit=-24.86650252692691; eastlimit=153.69873046875003; northlimit=-10.206813072484595
Shimada, T., Thums, M., Hamann, M., Limpus, C. J., Hays, G. C., FitzSimmons, N. N., Wildermann, N. E., Duarte, C. M., & Meekan, M. G. (2021). Optimising sample sizes for animal distribution analysis using tracking data. Methods in Ecology and Evolution, 12(2), 288–297. https://doi.org/10.1111/2041-210X.13506
doi :
https://doi.org/10.1111/2041-210X.13506
Methods in Ecology and Evolution - Publication Data
uri :
https://repository.kaust.edu.sa/handle/10754/667709
Shimada, Takahiro et al. (2020), Data from: Optimising sample sizes for animal distribution analysis using tracking data, Dryad, Dataset, https://doi.org/10.5061/dryad.x69p8czgh
- global : d986f5ef-9d99-4b0e-b717-9caa68f3a6b8