Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/436729]Researchers: Prof Hans Netter (Principal investigator) , Prof Richard Boyd , Prof Stephen Turner
Brief description For the induction of good immune responses, antigens should be delivered in several copies on a defined particle. The small envelope protein (HBsAg) encoded by the hepatitis B virus (HBV) has the capacity to self-assemble with host derived lipids into VLPs. HBsAg VLPs are the sole component of one of the most successful vaccines, and clinical trials have shown that they are a successful delivery system for foreign epitopes or protein domains. Hepatitis C virus (HCV) and Influenza viruses are major human pathogens. HCV has infected 200 million people worldwide, and there is no effective vaccine available. Influenza continues to affect thousands of people each year causing epidemics with severe morbidity and considerable mortality. Current influenza vaccines are mostly inactivated formulations and they exhibit poor immunogenicity in immunological naive persons such as children and in the elderly. The influenza vaccines are not optimal for stimulation of cell-mediated immunity. We propose to use particulate antigens as a delivery platform for influenza and HCV-specific epitopes with the focus to develop approaches to target various HCV and influenza strains, including H5N1 bird influenza. We have successfully produced modified VLPs containing HCV-specific sequences, which are able to induce anti-HCV antibodies with neutralising capacity. We hypothesise that the design of VLPs with an appropriate set of HCV-specific antigens will enhance the neutralising capacity of anti-HCV sera and this may overcome strain specificity. This application will exploit a prototype delivery system to induce antibody and also cellular responses against a variety of HCV- and influenza specific target sequences (epitopes). The outcome of this study will be a prototype multivalent vaccine to a range of HCV- and influenza-specific epitopes. As a delivery system this will be ideal for vaccination against agents that are highly variable.
Funding Amount $AUD 392,328.39
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 436729
- PURL : https://purl.org/au-research/grants/nhmrc/436729