grant

Neural Network Properties of the Primate Retina [ 2007 - 2009 ]

Also known as: A study of visual pathways in the retina

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/454460]

Researchers: A/Pr Ulrike Grunert (Principal investigator) ,  Glenn A Harrington (Funded by) ,  Prof Paul Martin

Brief description The broad aim of this project is to understand how the eye receives visual signals and sends them to the brain. Our experimental goal is to study the structure of neural connections in a poorly understood division of the visual system, called the koniocellular pathway. The cells of the koniocellular pathway make up close to 10 percent of all projections from the eye to the brain, but their functions are almost completely unknown. The fovea is a specialised region of the retina (the nerve cells which line the back of the eye). It is characterised by a very high density of cone photoreceptors, and is essential for high-acuity vision. This makes the fovea the most important part of the primate retina, but the high density of nerve cells there is thought to be the reason why the fovea is especially vulnerable to disease and age-related degeneration. Our aim is to analyse, using high-resolution microscopic techniques, the connections of koniocellular-pathway cells within the retina. We specifically aim to discover whether the koniocellular pathway contributes to foveal vision. Recent work from our and other laboratories has shown that many koniocellular-pathway cells receive functional connections from short-wavelength sensitive (blue) cone photoreceptors. Thus, our study will provide new insights into the connectivity of blue-cone pathways in the fovea. Although these experiments address basic scientific questions, they can lead to improved clinical practice. Understanding the wiring diagram of the retina can inform clinical studies of conditions such as glaucoma, and helps to give a rational basis for development of treatments. For example, dysfunction in blue-cone pathways is an early sign of glaucoma, so understanding the connections of blue-cone pathways in the fovea can lead to improved methods for early detection of this leading cause of blindness.

Funding Amount $AUD 417,335.05

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]