Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/301941]Researchers: Prof Ronald Skurray (Principal investigator) , Prof Melissa Brown
Brief description One of the most significant mechanisms of drug resistance is the export of antibiotics and other chemotherapeutic drugs from the cell. Drug export systems are an important medical problem due to their frequent occurrence in bacteria and parasites which cause human disease, and in human cancer cells. Proteins which recognise and export a broad range of drugs from a cell are called multidrug efflux pumps. These multidrug efflux systems present a serious threat to patient care and to successful therapy, since the ability to produce a single protein simultaneously renders the cell or organism resistant to several different drugs. Strains of the bacterial pathogen Staphylococcus aureus or Golden Staph, which are endemic in hospitals world-wide, contain an example of such a multidrug exporter, the QacA multidrug efflux pump. QacA exports at least 30 different antimicrobial compounds, including antiseptics and disinfectants. Production of this protein is regulated by a sensor protein, QacR, which detects the presence of a number of these antimicrobial compounds. To understand how the QacR sensor protein can recognise such a wide variety of compounds, we will identify and structurally characterise the regions of the QacR multidrug regulatory protein which bind these compounds. Additionally, we will examine the means by which QacR regulates the production of the QacA pump protein. This project will provide fundamental knowledge that will not only help with understanding the important process of multidrug resistance but will also enable the rational design of more effective antibacterial compounds that either block or evade these multidrug efflux systems.
Funding Amount $AUD 459,750.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 301941
- PURL : https://purl.org/au-research/grants/nhmrc/301941