grant

Morphological determinants of neurotransmission in autonomic ganglia. [ 2000 - 2002 ]

Also known as: How does the brain send instructions to the internal organs?

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/102128]

Researchers: Prof Ian Gibbins (Principal investigator)

Brief description The nervous system consists of billions of nerve cells that are connected together in special ways to process information about the outside world and our internal state and then generate the appropriate responses of our body to this information. To understand the complex working of the brain and its nerves, we have to understand how all these nerves are connected to each other. We are interested in the nerves that control the functions of the internal organs, such as arteries, glands and the gut. The brain controls these functions automatically, so we usually are not directly aware of their activity. The instructions to change the activity of the internal organs are sent from the brain down the spinal cord. The information is then sent from the spinal cord to the organs via a special set of nerves. However, instead of going directly to their targets, these nerves make connections with yet another set of nerves, which then go on to make the final connections with the appropriate target organs. We know a lot about these final nerve cells, including how big they are, how complicated they look, and what kinds of chemicals they use to send messages to the organs that they control. However, we still do not very much about how all these nerves are connected to each other. In this project we will use different types of modern microscopes that use either lasers or electron beams to look directly at the nerves and their connections. We then will use computerised models to construct a detailed map of the pathways taken by the nerves on their way to their target organs. By knowing how the nerves are connected to each other in these pathways, we will be able to understand how the instructions of the brain are modified depending on what other things are going on in the body at the same time. This information will be vital to help us appreciate how the nerves work when we get sick or injured.

Funding Amount $AUD 450,111.11

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]