grant

Mitochondrial Iron Overload and Friedreich's Ataxia: The Role of Frataxin in Iron and Haem Metabolism [ 2005 - 2007 ]

Also known as: Mitochondrial Iron Overload

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/350874]

Researchers: Prof Des Richardson (Principal investigator) ,  Prof Michael Davies

Brief description Friedreich's ataxia (FA) is due to the lack of a protein known as frataxin. A variety of studies using Baker's yeast and conditional frataxin knockout (KO) mice have shown that deletion of frataxin leads to the accumulation of toxic iron in their mitochondrion. More recently, a variety of studies have shown that FA patients have iron-loading within their mitochondrion. Iron in the highly redox active environment of the mitochondrion could contribute to the generation of cytotoxic radicals that cause severe damage. Further, cells deficient in frataxin are sensitive to oxidant stress and Fe chelators rescue oxidant-mediated death of cells from FA patients. Indeed, free radical scavengers have shown to be of use in the treatment of this disease. Studies in DR's lab during this NHMRC grant have shown that frataxin is down-regulated by erythroid differentiation or the haem precursor, protoporphyrin IX (BLOOD 2002;99:3813-22). These data indicate a role for frataxin in Fe metabolism and the pathogenesis of FA. In this study we will continue to examine the role of frataxin in the way cells handle Fe using experimental models developed under the current NHMRC grant. These include transfected cell lines with low frataxin expression generated using an expression vector containing anti-sense frataxin cDNA. Further we obtained the frataxin conditional KO mouse and generated a breeding colony. These animals display many of the pathological features of FA and are the best current model of the disease. Indeed, they will be critical for assessing the role of frataxin in Fe metabolism and as a model to test the ability of Fe-binding drugs to prevent the pathology observed. We designed lipid-soluble chelators that can enter the mitochondrion to bind Fe (Biochim Biophys Acta 2001;1536:133-140) and these ligands will be tested to prevent disease progression in the KO mice. This exciting research is crucial for understanding the pathogenesis of FA and in creating new therapies.

Funding Amount $AUD 606,000.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]