Full description
his dataset comprises an array of Mel Frequency Cepstral Coefficients (MFCCs) that have undergone feature scaling, representing a variety of human actions. Feature scaling, or data normalization, is a preprocessing technique used to standardize the range of features in the dataset. For MFCCs, this process helps ensure all coefficients contribute equally to the learning process, preventing features with larger scales from overshadowing those with smaller scales. In this dataset, the audio signals correspond to diverse human actions such as walking, running, jumping, and dancing. The MFCCs are calculated via a series of signal processing stages, which capture key characteristics of the audio signal in a manner that closely aligns with human auditory perception. The coefficients are then standardized or scaled using methods such as MinMax Scaling or Standardization, thereby normalizing their range. Each normalized MFCC vector corresponds to a segment of the audio signal. The dataset is meticulously designed for tasks including human action recognition, classification, segmentation, and detection based on auditory cues. It serves as an essential resource for training and evaluating machine learning models focused on interpreting human actions from audio signals. This dataset proves particularly beneficial for researchers and practitioners in fields such as signal processing, computer vision, and machine learning, who aim to craft algorithms for human action analysis leveraging audio signals.Notes
External OrganisationsEdith Cowan University
Associated Persons
Douglas Chai (Contributor); Syed Mohammed Shamsul Islam (Contributor)Muhammad Bilal Shaikh (Creator)
Douglas Chai (Contributor); Syed Mohammed Shamsul Islam (Contributor)Muhammad Bilal Shaikh (Creator)
Issued: 2023-07-26
Subjects
User Contributed Tags
Login to tag this record with meaningful keywords to make it easier to discover
Other Information
MAiVAR: Multimodal Audio-Image and Video Action Recognizer
url :
http://research-repository.uwa.edu.au/en/publications/320adc19-a686-4612-ac40-2216742198bc
Conference paper
Identifiers
- DOI : 10.17632/6D8V9JMVGM.1
- global : 01b0ee85-bceb-4a80-82f0-daf96eaef2bb