grant

Mechanisms regulating nutrient induced motor patterns in the isolated small intestine [ 2004 - 2006 ]

Also known as: How food alters the movement of the intestine after a meal

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/299807]

Researchers: Prof Joel Bornstein (Principal investigator)

Brief description The movements of the small intestine are essential for the digestion and absorption of a meal and consist of two basic patterns during a 3-4 hour period after a meal. These are mixing (or segmentation) and propulsion (or peristalsis). Although it is the subject of ongoing study, much is known about the basic mechanisms that control propulsion, largely because this behaviour is readily seen in isolated segments of gut so it is possible to undertake highly controlled experiments to identify the various cellular components of the system. By contrast, mixing has only been reliably seen in intact animals making studies of the detailed mechanisms responsible for this behaviour much more difficult. What is known is that the composition of a meal controls the relative amount of mixing and propulsion seen at any location along the small intestine. We have recently identified a pattern of contractions in isolated small intestine (duodenum and-or jejunum) that is induced by the presence of a nutrient in the intestine and appears very similar to the mixing behaviour seen in the intact animal. We have shown that this pattern depends on the activity of nerve cells including those that excite the gut muscle and that it depends on the activity of a hormone released from the lining of the gut wall by fats and other nutrients. The aims of this proposal are to identify how nutrients interact to produce this pattern of contractions, the relative roles of specific types of nerve cells and the sites at which the local hormones released by nutrients act. This is important because increasing the proportion of mixing to propulsion enhances the absorption of nutrient from a meal, so if the mechanisms that initiate mixing behaviour can be regulated in a predictable way by specific nutrient, absorption can be enhanced in various malabsorption syndromes.

Funding Amount $AUD 427,750.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]